Robots that learn to interact with the environment autonomously
pip install -U real_robots
If everything went well, then you should be able to run :
real-robots-demo
and it should (eventually) open up a small window with a little robotic arm doing random stuff.
import gym
import numpy as np
import time
import real_robots
from real_robots.policy import BasePolicy
class RandomPolicy(BasePolicy):
def __init__(self, action_space):
self.action_space = action_space
self.action = action_space.sample()
def step(self, observation, reward, done):
if np.random.rand() < 0.05:
self.action = self.action_space.sample()
return self.action
env = gym.make("REALRobot2020-R2J3-v0")
pi = RandomPolicy(env.action_space)
env.render("human")
observation = env.reset()
reward, done = 0, False
for t in range(40):
action = pi.step(observation, reward, done)
observation, reward, done, info = env.step(action)
import gym
import numpy as np
import real_robots
from real_robots.policy import BasePolicy
class RandomPolicy(BasePolicy):
def __init__(self, action_space):
self.action_space = action_space
self.action = action_space.sample()
def step(self, observation, reward, done):
if np.random.rand() < 0.05:
self.action = self.action_space.sample()
return self.action
result, detailed_scores = real_robots.evaluate(
RandomPolicy,
environment='R1',
action_type='macro_action',
n_objects=1,
intrinsic_timesteps=1e3,
extrinsic_timesteps=1e3,
extrinsic_trials=3,
visualize=False,
goals_dataset_path='goals-REAL2020-s2020-50-1.npy.npz'
)
# NOTE : You can find goals-REAL2020-s2020-50-1.npy.npz file in the REAL2020 Starter Kit repository
# or you can generate one using the real-robots-generate-goals command.
#
print(result)
# {'score_REAL2020': 0.06529471503519801, 'score_total': 0.06529471503519801}
print(detailed_scores)
# {'REAL2020': [0.00024387094790936833, 0.19553060745741896, 0.00010966670026571288]}
See also our FAQ.
- Free software: MIT license
The REALRobot environment is a standard gym environment.
It includes a 7DoF kuka arm with a 2DoF gripper, a table with 3 objects on it and a camera looking at the table from the top.
For more info on the environment see environment.md.
- Francesco Mannella
- Emilio Cartoni
- Sharada Mohanty