Giangiacomo Mercatali* | Yogesh verma* | Andre Freitas | Vikas Garg
This repository includes the supporting code for:
Giangiacomo Mercatali*, Yogesh Verma*, Andre Freitas, Vikas Garg. Diffusion Twigs with Loop Guidance for Conditional Graph Generation. In Advances in Neural Information Processing Systems 38, 2024.
Install packages in env.yml
. Tested on pytorch 1.13.1 py3.8_0
Download preprocessed data (by Huang et al 2023) found at this link into the data
folder.
Use the option --config.model.name=cond_DGT_concat
to run Jodo
from Huang et al. 2023.
Pairs: (Cv,Mu), (Gap,Mu), (alpha,Mu)
.
CUDA_VISIBLE_DEVICES=0 python main.py --config configs/vpsde_qm9_cond_multi_twigs.py --config.model.name=cond_DGT_twigs --config.training.n_iters=3000000 --mode train --config.nprops=2 --config.model.cond_ch=2 --workdir exp_cond_multi/vpsde_qm9_cond_twigs_Cv_mu --config.cond_property1 Cv --config.cond_property2 mu
CUDA_VISIBLE_DEVICES=0 python main.py --config configs/vpsde_qm9_cond_multi_twigs.py --config.model.name=cond_DGT_twigs --config.training.n_iters=3000000 --mode train --config.nprops=2 --config.model.cond_ch=2 --workdir exp_cond_multi/vpsde_qm9_cond_twigs_gap_mu --config.cond_property1 gap --config.cond_property2 mu --config.training.snapshot_freq=100000
CUDA_VISIBLE_DEVICES=0 python main.py --config configs/vpsde_qm9_cond_multi_twigs.py --config.model.name=cond_DGT_twigs --config.training.n_iters=3000000 --mode train --config.nprops=2 --config.model.cond_ch=2 --workdir exp_cond_multi/vpsde_qm9_cond_twigs_alpha_mu --config.cond_property1 alpha --config.cond_property2 mu --config.training.snapshot_freq=100000
ckpt=100
CUDA_VISIBLE_DEVICES=0 python main.py --config configs/vpsde_qm9_cond_multi_twigs.py --config.model.name=cond_DGT_twigs --mode eval --config.nprops=2 --config.model.cond_ch=2 --workdir exp_cond_multi/vpsde_qm9_cond_twigs_Cv_mu --config.cond_property1 Cv --config.cond_property2 mu --config.eval.save_graph=True --config.eval.ckpts=$ckpt
CUDA_VISIBLE_DEVICES=0 python main.py --config configs/vpsde_qm9_cond_multi_twigs.py --config.model.name=cond_DGT_twigs --mode eval --config.nprops=2 --config.model.cond_ch=2 --workdir exp_cond_multi/vpsde_qm9_cond_twigs_gap_mu --config.cond_property1 gap --config.cond_property2 mu --config.eval.save_graph=True --config.eval.ckpts=$ckpt
CUDA_VISIBLE_DEVICES=0 python main.py --config configs/vpsde_qm9_cond_multi_twigs.py --config.model.name=cond_DGT_twigs --mode eval --config.nprops=2 --config.model.cond_ch=2 --workdir exp_cond_multi/vpsde_qm9_cond_twigs_alpha_mu --config.cond_property1 alpha --config.cond_property2 mu --config.eval.save_graph=True --config.eval.ckpts=$ckpt
properties: alpha,mu,gap
CUDA_VISIBLE_DEVICES=0 python main.py --config configs/vpsde_qm9_cond_multi_twigs.py --config.model.name=cond_DGT_twigs --config.training.n_iters=3000000 --mode train --config.nprops=3 --config.model.cond_ch=3 --workdir exp_cond_multi/vpsde_qm9_cond_twigs_alpha_mu_gap --config.cond_property1 alpha --config.cond_property2 mu --config.cond_property3 gap --config.training.snapshot_freq=100000
CUDA_VISIBLE_DEVICES=0 python main.py --config configs/vpsde_qm9_cond_multi_twigs.py --config.model.name=cond_DGT_twigs --mode eval --config.nprops=3 --config.model.cond_ch=3 --workdir exp_cond_multi/vpsde_qm9_cond_twigs_alpha_mu_gap --config.cond_property1 alpha --config.cond_property2 mu --config.cond_property3 gap --config.eval.save_graph=True --config.eval.ckpts=$ckpt
If you find this repository useful in your research, please consider citing the following paper:
@inproceedings{
diffusiontwigs,
title={Diffusion Twigs with Loop Guidance for Conditional Graph Generation},
author= {Mercatali, Giangiacomo and Verma, Yogesh and Freitas, Andre and Garg, Vikas},
booktitle={The Thirty-eighth Annual Conference on Neural Information Processing Systems},
year={2024},
url={https://openreview.net/forum?id=fvOCJAAYLx}
}