The goal of this project is predit the chronic kidney disease using parameters such as Specific Gravity, Hyper Tension, Hemoglobin, Diabetes Mellitus, Albumin , Appetite, Red Blood Cell Count, Pus Cell etc.
- Numpy
- Matplotlib
- Seaborn
- Sklearn
- Pandas
This is open source data set taken from kaggle.
Attributes in given data set:-
age - age
bp - blood pressure
sg - specific gravity
al - albumin
su - sugar
rbc - red blood cells
pc - pus cell
pcc - pus cell clumps
ba - bacteria
bgr - blood glucose random
bu - blood urea
sc - serum creatinine
sod - sodium
pot - potassium
hemo - hemoglobin
pcv - packed cell volume
wc - white blood cell count
rc - red blood cell count
htn - hypertension
dm - diabetes mellitus
cad - coronary artery disease
appet - appetite
pe - pedal edema
ane - anemia
class - class
Attribute Information:
We use 24 + class = 25 ( 11 numeric ,14 nominal)
Age(numerical) age in years
Blood Pressure(numerical) bp in mm/Hg
Specific Gravity(nominal) sg - (1.005,1.010,1.015,1.020,1.025)
Albumin(nominal) al - (0,1,2,3,4,5)
Sugar(nominal) su - (0,1,2,3,4,5)
Red Blood Cells(nominal) rbc - (normal,abnormal)
Pus Cell (nominal) pc - (normal,abnormal)
Pus Cell clumps(nominal) pcc - (present,notpresent)
Bacteria(nominal) ba - (present,notpresent)
Blood Glucose Random(numerical) bgr in mgs/dl
Blood Urea(numerical) bu in mgs/dl
Serum Creatinine(numerical) sc in mgs/dl
Sodium(numerical) sod in mEq/L
Potassium(numerical) pot in mEq/L
Hemoglobin(numerical) hemo in gms
Packed Cell Volume(numerical)
White Blood Cell Count(numerical) wc in cells/cumm
Red Blood Cell Count(numerical) rc in millions/cmm
Hypertension(nominal) htn - (yes,no)
Diabetes Mellitus(nominal) dm - (yes,no)
Coronary Artery Disease(nominal) cad - (yes,no)
Appetite(nominal) appet - (good,poor)
Pedal Edema(nominal) pe - (yes,no)
Anemia(nominal) ane - (yes,no)
Class (nominal) class - (ckd,notckd)
Steps followed during data cleaning:-
- Replace categorical values into numerical values.
- Correct the mis-spelled categorical values.
- Drop the null values.
Steps followed in EDA:-
- Find out correlation in data set
- Random Forest Algorithm
- AdaBoostClassifier
- GradientBoosting
- Logistic Regression
- Naive Bayes
- KNN
- Kernal SVM
- Decision Tree
Perform the hyperparameter tuning to avoid the overfitting in model.
Create website using flask and use model for prediction.
Install Xampp And Paste the Website Folder in htdocs and Run the folder.