Skip to content

AbertayMachineLearningGroup/zero-day-detection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Utilising Deep Learning Techniques for Effective Zero-Day Attack Detection

This work aims at proposing an autoencoder implementation for detecting zero-day attacks.

Citation

To cite the paper please use the following format;

@article{Hindy2020,
  doi = {10.3390/electronics9101684},
  url = {https://doi.org/10.3390/electronics9101684},
  year = {2020},
  month = Oct,
  publisher = {{MDPI}},
  volume = {9},
  number = {10},
  pages = {1684},
  author = {Hanan Hindy and Robert Atkinson and Christos Tachtatzis and Jean-Noël Colin and Ethan Bayne and Xavier Bellekens},
  title = {Utilising Deep Learning Techniques for Effective Zero-Day Attack Detection},
  journal = {Electronics}
}

General Parameters

Argument Usage Default Values and Notes
--model Autoencoder or OneClass SVM Autoencoder Use 'svm' for One-Class SVM
--normal_path CICIDS2017 Dataset Monday File Path DataFiles/CIC/biflow_Monday-WorkingHours_Fixed.csv
--attack_paths CICIDS2017 Dataset Folder Path DataFiles/CIC/
--dataset_path KDD or NSL csv path DataFiles/KDD/kddcup.data_10_percent_corrected For the NSL-KDD dataset: DataFiles/NSL/KDDTrain+.txt
--output The output file name Result.csv
--epochs The number of ephochs 50
--archi Autoencoder architecture U15,U9,U15 UX represents a layer with X neurons, D, represents a dropout layer
--dropout Dropout value that is used with D layer in archi 0.05
--regu Regularisation l2 l1, l2 or l1l2
--l1_value L1 Regularisation Value 0.01
--l2_value L2 Regularisation Value 0.0001
--correlation_value Correlation value to drop features 0.9
--nu One-Class SVM nu value 0.01
--kern One-Class SVM kernel rbf
--loss Loss function mse NSL-KDD: mae

How to Run the repository:

Clone this repository
run main.py [specify the parameters as required]

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages