Skip to content

Export sales data from Google Sheet to a relational DBSM

Notifications You must be signed in to change notification settings

Adesoji1/GooglesheettoMysql

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

To export the sales data from the Google Sheet to a relational DBMS, we need to perform the following steps:

  1. Read the data from Google Sheets: Use Google Sheets API to access the data programmatically.
  2. Process the data: Extract relevant fields and format them as needed for the relational DBMS.
  3. Insert the data into the DBMS: Use an appropriate database client to insert the data into the DBMS.

Thia is a step-by-step guide to achieve this:

Step 1: Set Up Google Sheets API

First, enable the Google Sheets API and obtain the credentials JSON file.

  1. Go to the Google Cloud Console.
  2. Create a new project or select an existing project.
  3. Go to the API & Services > Library.
  4. Enable the Google Sheets API.
  5. Go to API & Services > Credentials.
  6. Create OAuth client ID credentials.
  7. Download the JSON file with your credentials.

Step 2: Install Required Libraries

Install the necessary Python libraries:

pip install gspread oauth2client mysql-connector-python

Step 3: Create a Python Script

Create a Python script to read the data from Google Sheets and insert it into a MySQL database.

import gspread
from oauth2client.service_account import ServiceAccountCredentials
import mysql.connector
from mysql.connector import errorcode

# Define the scope and authenticate using the credentials JSON
scope = ["https://spreadsheets.google.com/feeds", "https://www.googleapis.com/auth/drive"]
credentials = ServiceAccountCredentials.from_json_keyfile_name('path/to/your/credentials.json', scope)
client = gspread.authorize(credentials)

# Open the Google Sheet by name
sheet = client.open("Control Dashboard 2024").worksheet("ZU")

# Fetch all rows
rows = sheet.get_all_values()

# Connect to the MySQL database
try:
    cnx = mysql.connector.connect(user='your_username', password='your_password',
                                  host='your_host', database='your_database')
    cursor = cnx.cursor()
except mysql.connector.Error as err:
    if err.errno == errorcode.ER_ACCESS_DENIED_ERROR:
        print("Something is wrong with your user name or password")
    elif err.errno == errorcode.ER_BAD_DB_ERROR:
        print("Database does not exist")
    else:
        print(err)

# Iterate through the rows and insert into the database
for row in rows[1:]:  # Skip the header row
    c_name = row[0]
    c_country = row[1]
    c_segment = row[2]
    s_type = row[8]
    s_consultant = row[11]
    
    # Insert into customer table
    cursor.execute("INSERT INTO customer (c_name, c_country, c_segment) VALUES (%s, %s, %s)", 
                   (c_name, c_country, c_segment))
    
    # Get the last inserted id for customer
    customer_id = cursor.lastrowid
    
    # Insert into sale table
    cursor.execute("INSERT INTO sale (customer_id, s_type, s_consultant) VALUES (%s, %s, %s)", 
                   (customer_id, s_type, s_consultant))
    
    # Get the last inserted id for sale
    sale_id = cursor.lastrowid
    
    # Insert into revenue table for each month and currency
    for i, col in enumerate(['p', 'q', 'r', 'x', 'y', 'z', 'af', 'ag', 'ah', 'an', 'ao', 'ap', 'av', 'aw', 'ax', 'bd', 'be', 'bf', 'bl', 'bm', 'bn', 'bt', 'bu', 'bv', 'cb', 'cc', 'cd', 'cj', 'ck', 'cl', 'cr', 'cs', 'ct', 'cz', 'da', 'db']):
        r_value = row[sheet.find(col).col - 1]
        r_year = '2024'
        r_month = str((i // 3) + 1).zfill(2)
        r_currency = ['CHF', 'EUR', 'GBP'][i % 3]
        
        cursor.execute("INSERT INTO revenue (sale_id, r_year, r_month, r_value, r_currency) VALUES (%s, %s, %s, %s, %s)",
                       (sale_id, r_year, r_month, r_value, r_currency))

# Commit the transaction
cnx.commit()

# Close the connection
cursor.close()
cnx.close()

Step 4: Create the Database Schema

Run the following SQL commands to create the database schema:

CREATE DATABASE your_database;
USE your_database;

CREATE TABLE customer (
    id INT AUTO_INCREMENT PRIMARY KEY,
    c_name VARCHAR(255),
    c_country VARCHAR(255),
    c_segment VARCHAR(255)
);

CREATE TABLE sale (
    id INT AUTO_INCREMENT PRIMARY KEY,
    customer_id INT,
    s_type VARCHAR(255),
    s_consultant VARCHAR(255),
    FOREIGN KEY (customer_id) REFERENCES customer(id)
);

CREATE TABLE revenue (
    id INT AUTO_INCREMENT PRIMARY KEY,
    sale_id INT,
    r_year VARCHAR(4),
    r_month VARCHAR(2),
    r_value DECIMAL(10, 2),
    r_currency VARCHAR(3),
    FOREIGN KEY (sale_id) REFERENCES sale(id)
);

Summary

  1. Set up Google Sheets API and obtain credentials.
  2. Install necessary libraries.
  3. Create a Python script to read data from Google Sheets and insert it into a MySQL database.
  4. Create the required database schema.

Releases

No releases published

Packages

No packages published

Languages