Skip to content

Commit

Permalink
Fix thread synchronization bug + many more (#8562)
Browse files Browse the repository at this point in the history
* Minor: float fps (useful for small values - e.g. CPU)
* Fix multiple code readability issues
* Better synchoronize threads (when user interrupts video)
* Better thread objects handling
* Pass data via arguments instead of global like variables - 0
* Minor code readability fixes
* CTypes definitions
* Pass data via arguments instead of global like variables - 1
* Code reordering + (minor) renames
* Pass data via arguments instead of global like variables - 2
  • Loading branch information
CristiFati authored Aug 25, 2023
1 parent ef8ad4a commit c87e33e
Show file tree
Hide file tree
Showing 2 changed files with 202 additions and 145 deletions.
183 changes: 105 additions & 78 deletions darknet.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,49 +8,71 @@
Use pip3 instead of pip on some systems to be sure to install modules for python3
"""

from ctypes import *
import math
import ctypes as ct
import random
import os
import cv2
import numpy as np


class BOX(Structure):
_fields_ = [("x", c_float),
("y", c_float),
("w", c_float),
("h", c_float)]
class BOX(ct.Structure):
_fields_ = (
("x", ct.c_float),
("y", ct.c_float),
("w", ct.c_float),
("h", ct.c_float),
)


class DETECTION(Structure):
_fields_ = [("bbox", BOX),
("classes", c_int),
("best_class_idx", c_int),
("prob", POINTER(c_float)),
("mask", POINTER(c_float)),
("objectness", c_float),
("sort_class", c_int),
("uc", POINTER(c_float)),
("points", c_int),
("embeddings", POINTER(c_float)),
("embedding_size", c_int),
("sim", c_float),
("track_id", c_int)]
FloatPtr = ct.POINTER(ct.c_float)
IntPtr = ct.POINTER(ct.c_int)

class DETNUMPAIR(Structure):
_fields_ = [("num", c_int),
("dets", POINTER(DETECTION))]

class DETECTION(ct.Structure):
_fields_ = (
("bbox", BOX),
("classes", ct.c_int),
("best_class_idx", ct.c_int),
("prob", FloatPtr),
("mask", FloatPtr),
("objectness", ct.c_float),
("sort_class", ct.c_int),
("uc", FloatPtr),
("points", ct.c_int),
("embeddings", FloatPtr),
("embedding_size", ct.c_int),
("sim", ct.c_float),
("track_id", ct.c_int),
)

class IMAGE(Structure):
_fields_ = [("w", c_int),
("h", c_int),
("c", c_int),
("data", POINTER(c_float))]

DETECTIONPtr = ct.POINTER(DETECTION)

class METADATA(Structure):
_fields_ = [("classes", c_int),
("names", POINTER(c_char_p))]

class DETNUMPAIR(ct.Structure):
_fields_ = (
("num", ct.c_int),
("dets", DETECTIONPtr),
)


DETNUMPAIRPtr = ct.POINTER(DETNUMPAIR)


class IMAGE(ct.Structure):
_fields_ = (
("w", ct.c_int),
("h", ct.c_int),
("c", ct.c_int),
("data", FloatPtr),
)


class METADATA(ct.Structure):
_fields_ = (
("classes", ct.c_int),
("names", ct.POINTER(ct.c_char_p)),
)


def network_width(net):
Expand All @@ -67,10 +89,10 @@ def bbox2points(bbox):
to corner points cv2 rectangle
"""
x, y, w, h = bbox
xmin = int(round(x - (w / 2)))
xmax = int(round(x + (w / 2)))
ymin = int(round(y - (h / 2)))
ymax = int(round(y + (h / 2)))
xmin = round(x - (w / 2))
xmax = round(x + (w / 2))
ymin = round(y - (h / 2))
ymax = round(y + (h / 2))
return xmin, ymin, xmax, ymax


Expand Down Expand Up @@ -134,6 +156,7 @@ def decode_detection(detections):
decoded.append((str(label), confidence, bbox))
return decoded


# https://www.pyimagesearch.com/2015/02/16/faster-non-maximum-suppression-python/
# Malisiewicz et al.
def non_max_suppression_fast(detections, overlap_thresh):
Expand Down Expand Up @@ -185,6 +208,7 @@ def non_max_suppression_fast(detections, overlap_thresh):
# integer data type
return [detections[i] for i in pick]


def remove_negatives(detections, class_names, num):
"""
Remove all classes with 0% confidence within the detection
Expand Down Expand Up @@ -218,7 +242,7 @@ def detect_image(network, class_names, image, thresh=.5, hier_thresh=.5, nms=.45
"""
Returns a list with highest confidence class and their bbox
"""
pnum = pointer(c_int(0))
pnum = ct.pointer(ct.c_int(0))
predict_image(network, image)
detections = get_network_boxes(network, image.w, image.h,
thresh, hier_thresh, None, 0, pnum, 0)
Expand All @@ -233,102 +257,105 @@ def detect_image(network, class_names, image, thresh=.5, hier_thresh=.5, nms=.45

if os.name == "posix":
cwd = os.path.dirname(__file__)
lib = CDLL(cwd + "/libdarknet.so", RTLD_GLOBAL)
lib = ct.CDLL(cwd + "/libdarknet.so", ct.RTLD_GLOBAL)
elif os.name == "nt":
cwd = os.path.dirname(__file__)
os.environ['PATH'] = cwd + ';' + os.environ['PATH']
lib = CDLL("darknet.dll", RTLD_GLOBAL)
os.environ["PATH"] = os.path.pathsep.join((cwd, os.environ["PATH"]))
lib = ct.CDLL("darknet.dll", ct.RTLD_GLOBAL)
else:
lib = None # Intellisense
print("Unsupported OS")
exit
exit()

lib.network_width.argtypes = [c_void_p]
lib.network_width.restype = c_int
lib.network_height.argtypes = [c_void_p]
lib.network_height.restype = c_int
lib.network_width.argtypes = (ct.c_void_p,)
lib.network_width.restype = ct.c_int
lib.network_height.argtypes = (ct.c_void_p,)
lib.network_height.restype = ct.c_int

copy_image_from_bytes = lib.copy_image_from_bytes
copy_image_from_bytes.argtypes = [IMAGE,c_char_p]
copy_image_from_bytes.argtypes = (IMAGE, ct.c_char_p)

predict = lib.network_predict_ptr
predict.argtypes = [c_void_p, POINTER(c_float)]
predict.restype = POINTER(c_float)
predict.argtypes = (ct.c_void_p, FloatPtr)
predict.restype = FloatPtr

set_gpu = lib.cuda_set_device
init_cpu = lib.init_cpu

make_image = lib.make_image
make_image.argtypes = [c_int, c_int, c_int]
make_image.argtypes = (ct.c_int, ct.c_int, ct.c_int)
make_image.restype = IMAGE

get_network_boxes = lib.get_network_boxes
get_network_boxes.argtypes = [c_void_p, c_int, c_int, c_float, c_float, POINTER(c_int), c_int, POINTER(c_int), c_int]
get_network_boxes.restype = POINTER(DETECTION)
get_network_boxes.argtypes = (ct.c_void_p, ct.c_int, ct.c_int, ct.c_float, ct.c_float, IntPtr, ct.c_int, IntPtr,
ct.c_int)
get_network_boxes.restype = DETECTIONPtr

make_network_boxes = lib.make_network_boxes
make_network_boxes.argtypes = [c_void_p]
make_network_boxes.restype = POINTER(DETECTION)
make_network_boxes.argtypes = (ct.c_void_p,)
make_network_boxes.restype = DETECTIONPtr

free_detections = lib.free_detections
free_detections.argtypes = [POINTER(DETECTION), c_int]
free_detections.argtypes = (DETECTIONPtr, ct.c_int)

free_batch_detections = lib.free_batch_detections
free_batch_detections.argtypes = [POINTER(DETNUMPAIR), c_int]
free_batch_detections.argtypes = (DETNUMPAIRPtr, ct.c_int)

free_ptrs = lib.free_ptrs
free_ptrs.argtypes = [POINTER(c_void_p), c_int]
free_ptrs.argtypes = (ct.POINTER(ct.c_void_p), ct.c_int)

network_predict = lib.network_predict_ptr
network_predict.argtypes = [c_void_p, POINTER(c_float)]
network_predict.argtypes = (ct.c_void_p, FloatPtr)

reset_rnn = lib.reset_rnn
reset_rnn.argtypes = [c_void_p]
reset_rnn.argtypes = (ct.c_void_p,)

load_net = lib.load_network
load_net.argtypes = [c_char_p, c_char_p, c_int]
load_net.restype = c_void_p
load_net.argtypes = (ct.c_char_p, ct.c_char_p, ct.c_int)
load_net.restype = ct.c_void_p

load_net_custom = lib.load_network_custom
load_net_custom.argtypes = [c_char_p, c_char_p, c_int, c_int]
load_net_custom.restype = c_void_p
load_net_custom.argtypes = (ct.c_char_p, ct.c_char_p, ct.c_int, ct.c_int)
load_net_custom.restype = ct.c_void_p

free_network_ptr = lib.free_network_ptr
free_network_ptr.argtypes = [c_void_p]
free_network_ptr.restype = c_void_p
free_network_ptr.argtypes = (ct.c_void_p,)
free_network_ptr.restype = ct.c_void_p

do_nms_obj = lib.do_nms_obj
do_nms_obj.argtypes = [POINTER(DETECTION), c_int, c_int, c_float]
do_nms_obj.argtypes = (DETECTIONPtr, ct.c_int, ct.c_int, ct.c_float)

do_nms_sort = lib.do_nms_sort
do_nms_sort.argtypes = [POINTER(DETECTION), c_int, c_int, c_float]
do_nms_sort.argtypes = (DETECTIONPtr, ct.c_int, ct.c_int, ct.c_float)

free_image = lib.free_image
free_image.argtypes = [IMAGE]
free_image.argtypes = (IMAGE,)

letterbox_image = lib.letterbox_image
letterbox_image.argtypes = [IMAGE, c_int, c_int]
letterbox_image.argtypes = (IMAGE, ct.c_int, ct.c_int)
letterbox_image.restype = IMAGE

load_meta = lib.get_metadata
lib.get_metadata.argtypes = [c_char_p]
lib.get_metadata.argtypes = (ct.c_char_p,)
lib.get_metadata.restype = METADATA

load_image = lib.load_image_color
load_image.argtypes = [c_char_p, c_int, c_int]
load_image.argtypes = (ct.c_char_p, ct.c_int, ct.c_int)
load_image.restype = IMAGE

rgbgr_image = lib.rgbgr_image
rgbgr_image.argtypes = [IMAGE]
rgbgr_image.argtypes = (IMAGE,)

predict_image = lib.network_predict_image
predict_image.argtypes = [c_void_p, IMAGE]
predict_image.restype = POINTER(c_float)
predict_image.argtypes = (ct.c_void_p, IMAGE)
predict_image.restype = FloatPtr

predict_image_letterbox = lib.network_predict_image_letterbox
predict_image_letterbox.argtypes = [c_void_p, IMAGE]
predict_image_letterbox.restype = POINTER(c_float)
predict_image_letterbox.argtypes = (ct.c_void_p, IMAGE)
predict_image_letterbox.restype = FloatPtr

network_predict_batch = lib.network_predict_batch
network_predict_batch.argtypes = [c_void_p, IMAGE, c_int, c_int, c_int,
c_float, c_float, POINTER(c_int), c_int, c_int]
network_predict_batch.restype = POINTER(DETNUMPAIR)
network_predict_batch.argtypes = (ct.c_void_p, IMAGE, ct.c_int, ct.c_int, ct.c_int,
ct.c_float, ct.c_float, IntPtr, ct.c_int, ct.c_int)
network_predict_batch.restype = DETNUMPAIRPtr

Loading

0 comments on commit c87e33e

Please sign in to comment.