git clone https://github.com/Andy-Leo10/robot_ur3e_yolov5.git
Motivation
When working on a real environment it is difficult to tune parameters in a program based on digital image processing. For that reason, a good approach is to use a CNN.
Optional setup
cd yolov5
tensorboard --logdir runs\train
.venv\Scripts\python.exe -m pip install <LIBRARY>
TRAINING
python train.py --img 424 --batch 16 --epochs 10 --data customData.yaml --weights yolov5n.pt --cache
python train.py --img 424 --batch 16 --epochs 100 --data customData.yaml --weights yolov5n.pt --cache
python train.py --img 424 --batch 16 --epochs 300 --data customData.yaml --weights yolov5n.pt --cache
TESTING
python detect.py --weights C:\Users\Leo\Downloads\MachineLearning\yolov5\runs\train\exp\weights\best.pt --img 424 --conf 0.25 --source C:\Users\Leo\Downloads\MachineLearning\photo_1718317391.jpg
python detect.py --weights C:\Users\Leo\Downloads\MachineLearning\yolov5\runs\train\exp1\weights\best.pt --img 424 --conf 0.25 --source C:\Users\Leo\Downloads\MachineLearning\photo_1718317391.jpg
python detect.py --weights C:\Users\Leo\Downloads\MachineLearning\yolov5\runs\train\exp2\weights\best.pt --img 424 --conf 0.25 --source C:\Users\Leo\Downloads\MachineLearning\photo_1718317391.jpg