Skip to content

Commit

Permalink
Add examples for image-to-text task (#2754)
Browse files Browse the repository at this point in the history
* add blip2 examples

* fix formatting

* address pr comments

* .

* fix formatting

* use blip model

* use blip for cli examples

* format
  • Loading branch information
sharma-riti authored Nov 3, 2023
1 parent 6c22977 commit 045ebc2
Show file tree
Hide file tree
Showing 7 changed files with 1,187 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
$schema: https://azuremlschemas.azureedge.net/latest/batchDeployment.schema.json
name: demo
description: "Batch endpoint for image-to-text task"
type: model
resources:
instance_count: 1
settings:
mini_batch_size: 1

Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
$schema: https://azuremlschemas.azureedge.net/latest/managedOnlineDeployment.schema.json
name: image-to-text-demo
instance_type: Standard_DS5_v2
instance_count: 1
liveness_probe:
initial_delay: 180
period: 180
failure_threshold: 49
timeout: 299
request_settings:
request_timeout_ms: 90000

Original file line number Diff line number Diff line change
@@ -0,0 +1,111 @@
set -x
# The commands in this file map to steps in this notebook: https://aka.ms/azureml-infer-batch-sdk-blip-image-to-text
# The sample scoring file available in the same folder as the above notebook.

# script inputs
registry_name="azureml"
subscription_id="<SUBSCRIPTION_ID>"
resource_group_name="<RESOURCE_GROUP>"
workspace_name="<WORKSPACE_NAME>"

# This is the model from system registry that needs to be deployed
model_name="Salesforce-BLIP-image-captioning-base"
model_label="latest"

deployment_compute="cpu-cluster"
# todo: fetch deployment_sku from the min_inference_sku tag of the model
deployment_sku="Standard_DS5_v2"


version=$(date +%s)
endpoint_name="image-to-text-$version"
deployment_name="demo-$version"

# Prepare data for deployment
data_path="data_batch"
python ./prepare_data.py --mode "batch" --data_path $data_path
# sample request data in folder of csv files with image and text columns
sample_request_csv_folder="./data_batch/odfridgeObjects/batch"

# 1. Setup pre-requisites
if [ "$subscription_id" = "<SUBSCRIPTION_ID>" ] || \
["$resource_group_name" = "<RESOURCE_GROUP>" ] || \
[ "$workspace_name" = "<WORKSPACE_NAME>" ]; then
echo "Please update the script with the subscription_id, resource_group_name and workspace_name"
exit 1
fi

az account set -s $subscription_id
workspace_info="--resource-group $resource_group_name --workspace-name $workspace_name"

# 2. Check if the model exists in the registry
# Need to confirm model show command works for registries outside the tenant (aka system registry)
if ! az ml model show --name $model_name --label $model_label --registry-name $registry_name
then
echo "Model $model_name:$model_label does not exist in registry $registry_name"
exit 1
fi

# Get the latest model version
model_version=$(az ml model show --name $model_name --label $model_label --registry-name $registry_name --query version --output tsv)

# 3. Check if compute $deployment_compute exists, else create it
if az ml compute show --name $deployment_compute $workspace_info
then
echo "Compute cluster $deployment_compute already exists"
else
echo "Creating compute cluster $deployment_compute"
az ml compute create --name $deployment_compute --type amlcompute --min-instances 0 --max-instances 2 --size $deployment_sku $workspace_info || {
echo "Failed to create compute cluster $deployment_compute"
exit 1
}
fi

# 4. Deploy the model to an endpoint
# Create batch endpoint
az ml batch-endpoint create --name $endpoint_name $workspace_info || {
echo "endpoint create failed"; exit 1;
}

# Deploy model from registry to endpoint in workspace
az ml batch-deployment create --file ./deploy-batch.yaml $workspace_info --set \
endpoint_name=$endpoint_name model=azureml://registries/$registry_name/models/$model_name/versions/$model_version \
compute=$deployment_compute \
name=$deployment_name || {
echo "deployment create failed"; exit 1;
}

# 5 Try a scoring request with csv file

# Check if scoring data file exists
if [ -d $sample_request_csv_folder ]; then
echo "Invoking endpoint $endpoint_name with following input:\n\n"
echo "\n\n"
else
echo "Scoring file $sample_request_csv_folder does not exist"
exit 1
fi

# Invoke the endpoint
# Note: If job failed with Out of Memory Error then
# please try splitting your input into smaller csv files or
# decrease the mini_batch_size for the deployment (see deploy-batch.yaml).
csv_inference_job=$(az ml batch-endpoint invoke --name $endpoint_name \
--deployment-name $deployment_name --input $sample_request_csv_folder --input-type \
uri_folder $workspace_info --query name --output tsv) || {
echo "endpoint invoke failed"; exit 1;
}

# wait for the job to complete
az ml job stream --name $csv_inference_job $workspace_info || {
echo "job stream failed"; exit 1;
}

# 6. Delete the endpoint
# Batch endpoints use compute resources only when jobs are submitted. You can keep the
# batch endpoint for your reference without worrying about compute bills, or choose to delete the endpoint.
# If you created your compute cluster to have zero minimum instances and scale down soon after being idle,
# you won't be charged for an unused compute.
az ml batch-endpoint delete --name $endpoint_name $workspace_info --yes || {
echo "endpoint delete failed"; exit 1;
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,80 @@
set -x
# The commands in this file map to steps in this notebook: https://aka.ms/azureml-infer-online-sdk-blip-image-to-text
# The sample scoring file available in the same folder as the above notebook

# script inputs
registry_name="azureml"
subscription_id="<SUBSCRIPTION_ID>"
resource_group_name="<RESOURCE_GROUP>"
workspace_name="<WORKSPACE_NAME>"

# This is the model from system registry that needs to be deployed
model_name="Salesforce-BLIP-image-captioning-base"
model_label="latest"

version=$(date +%s)
endpoint_name="image-to-text-$version"

# Todo: fetch deployment_sku from the min_inference_sku tag of the model
deployment_sku="Standard_DS5_v2"

# Prepare data for deployment
data_path="./data_online"
python ./prepare_data.py --data_path $data_path --mode "online"
# sample_request_data
sample_request_data="$data_path/odfridgeObjects/sample_request_data.json"
# 1. Setup pre-requisites
if [ "$subscription_id" = "<SUBSCRIPTION_ID>" ] || \
["$resource_group_name" = "<RESOURCE_GROUP>" ] || \
[ "$workspace_name" = "<WORKSPACE_NAME>" ]; then
echo "Please update the script with the subscription_id, resource_group_name and workspace_name"
exit 1
fi

az account set -s $subscription_id
workspace_info="--resource-group $resource_group_name --workspace-name $workspace_name"

# 2. Check if the model exists in the registry
# Need to confirm model show command works for registries outside the tenant (aka system registry)
if ! az ml model show --name $model_name --label $model_label --registry-name $registry_name
then
echo "Model $model_name:$model_label does not exist in registry $registry_name"
exit 1
fi

# Get the latest model version
model_version=$(az ml model show --name $model_name --label $model_label --registry-name $registry_name --query version --output tsv)

# 3. Deploy the model to an endpoint
# Create online endpoint
az ml online-endpoint create --name $endpoint_name $workspace_info || {
echo "endpoint create failed"; exit 1;
}

# Deploy model from registry to endpoint in workspace
az ml online-deployment create --file deploy-online.yaml $workspace_info --all-traffic --set \
endpoint_name=$endpoint_name model=azureml://registries/$registry_name/models/$model_name/versions/$model_version \
instance_type=$deployment_sku || {
echo "deployment create failed"; exit 1;
}

# 4. Try a sample scoring request

# Check if scoring data file exists
if [ -f $sample_request_data ]; then
echo "Invoking endpoint $endpoint_name with $sample_request_data\n\n"
else
echo "Scoring file $sample_request_data does not exist"
exit 1
fi

az ml online-endpoint invoke --name $endpoint_name --request-file $sample_request_data $workspace_info || {
echo "endpoint invoke failed"; exit 1;
}

# 6. Delete the endpoint and sample_request_data.json
az ml online-endpoint delete --name $endpoint_name $workspace_info --yes || {
echo "endpoint delete failed"; exit 1;
}

rm $sample_request_data
146 changes: 146 additions & 0 deletions cli/foundation-models/system/inference/image-to-text/prepare_data.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,146 @@
import argparse
import base64
import json
import os
import shutil
import urllib.request
import pandas as pd
from zipfile import ZipFile


def download_and_unzip(dataset_parent_dir: str) -> None:
"""Download image dataset and unzip it.
:param dataset_parent_dir: dataset parent directory to which dataset will be downloaded
:type dataset_parent_dir: str
"""
# Create directory, if it does not exist
os.makedirs(dataset_parent_dir, exist_ok=True)

# download data
download_url = "https://cvbp-secondary.z19.web.core.windows.net/datasets/object_detection/odFridgeObjects.zip"
print(f"Downloading data from {download_url}")

# Extract current dataset name from dataset url
dataset_name = os.path.basename(download_url).split(".")[0]
# Get dataset path for later use
dataset_dir = os.path.join(dataset_parent_dir, dataset_name)

if os.path.exists(dataset_dir):
shutil.rmtree(dataset_dir)

# Get the name of zip file
data_file = os.path.join(dataset_parent_dir, f"{dataset_name}.zip")

# Download data from public url
urllib.request.urlretrieve(download_url, filename=data_file)

# extract files
with ZipFile(data_file, "r") as zip:
print("extracting files...")
zip.extractall(path=dataset_parent_dir)
print("done")
# delete zip file
os.remove(data_file)
return dataset_dir


def read_image(image_path: str) -> bytes:
"""Read image from path.
:param image_path: image path
:type image_path: str
:return: image in bytes format
:rtype: bytes
"""
with open(image_path, "rb") as f:
return f.read()


def prepare_data_for_online_inference(dataset_dir: str) -> None:
"""Prepare request json for online inference.
:param dataset_dir: dataset directory
:type dataset_dir: str
"""
sample_image_1 = os.path.join(dataset_dir, "images", "99.jpg")
sample_image_2 = os.path.join(dataset_dir, "images", "1.jpg")

request_json = {
"input_data": {
"columns": ["image"],
"index": [0, 1],
"data": [
[base64.encodebytes(read_image(sample_image_1)).decode("utf-8")],
[base64.encodebytes(read_image(sample_image_2)).decode("utf-8")],
],
}
}

request_file_name = os.path.join(dataset_dir, "sample_request_data.json")

with open(request_file_name, "w") as request_file:
json.dump(request_json, request_file)


def prepare_data_for_batch_inference(dataset_dir: str) -> None:
"""Prepare image folder and csv file for batch inference.
This function will create a folder of csv files with images in base64 format.
:param dataset_dir: dataset directory
:type dataset_dir: str
"""

csv_folder_path = os.path.join(dataset_dir, "batch")
os.makedirs(csv_folder_path, exist_ok=True)
batch_input_file = "batch_input.csv"
dataset_dir = os.path.join(dataset_dir, "images")

image_list = []
for image_name in os.listdir(dataset_dir):
image = read_image(os.path.join(dataset_dir, image_name))
data = base64.encodebytes(image).decode("utf-8")
image_list.append(data)

# Divide the image list into files of 10 rows each
batch_size_per_predict = 10
divided_list = [
image_list[i * batch_size_per_predict : (i + 1) * batch_size_per_predict]
for i in range(
(len(image_list) + batch_size_per_predict - 1) // batch_size_per_predict
)
]

list_num = 0
for l in divided_list:
batch_df = pd.DataFrame(l, columns=["image"])
filepath = os.path.join(csv_folder_path, str(list_num) + batch_input_file)
list_num = list_num + 1
batch_df.to_csv(filepath)


if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Prepare data for image-to-text task")
parser.add_argument(
"--data_path", type=str, default="data", help="Dataset location"
)
parser.add_argument(
"--mode",
type=str,
default="online",
help="prepare data for online or batch inference",
)

args, unknown = parser.parse_known_args()
args_dict = vars(args)

dataset_dir = download_and_unzip(
dataset_parent_dir=os.path.join(
os.path.dirname(os.path.realpath(__file__)), args.data_path
),
)

if args.mode == "online":
prepare_data_for_online_inference(dataset_dir=dataset_dir)
else:
prepare_data_for_batch_inference(dataset_dir=dataset_dir)
Loading

0 comments on commit 045ebc2

Please sign in to comment.