Skip to content

Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification, IGARSS, 2021.

License

Notifications You must be signed in to change notification settings

B-Xi/IGARSS_2021_SSGPN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification, IGARSS, 2021.

Bobo Xi, Jiaojiao Li, Yunsong Li and Qian Du.


Code for the paper: Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification.

Fig. 1: The framework of our proposed SSGPN for HSI classification.

Training and Test Process

Please simply run 'SSGPN_IP.py' to reproduce the SSGPN results on IndianPines data set. The groundtruth and the obtained classification map are shown below. We have successfully test it on Ubuntu 16.04 with Tensorflow 1.13.1 and GTX 1080 Ti GPU.

Fig. 2: The groundtruth and classification map of Indian Pines dataset.

References

If you find this code helpful, please kindly cite:

[1] B. Xi, J. Li, Y. Li and Q. Du, "Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification," 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 2021, pp. 2851-2854, doi: 10.1109/IGARSS47720.2021.9553372
[2] B. Xi, J. Li, Y. Li, R. Song, Y. Xiao, Q. Du, J. Chanussot, “Semisupervised Cross-scale Graph Prototypical Network for Hyperspectral Image Classification,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1-15, 2022, doi:10.1109/TNNLS.2022.3158280.
[3] B. Xi, J. Li, Y. Li, R. Song, Y. Shi, S. Liu, Q. Du "Deep Prototypical Networks With Hybrid Residual Attention for Hyperspectral Image Classification," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13, pp. 3683-3700, 2020, doi: 10.1109/JSTARS.2020.3004973.

Citation Details

BibTeX entry:

@INPROCEEDINGS{Xi_2021IGARSS_GPN,
  author={Xi, Bobo and Li, Jiaojiao and Li, Yunsong and Du, Qian},
  booktitle={2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS}, 
  title={Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification}, 
  year={2021},
  volume={},
  number={},
  pages={2851-2854},
  doi={10.1109/IGARSS47720.2021.9553372}}
@ARTICLE{Xi_2022TNNLS_XGPN,
  author={Xi, Bobo and Li, Jiaojiao and Li, Yunsong and Song, Rui and Xiao, Yuchao and Du, Qian and Chanussot, Jocelyn},
  journal={IEEE Transactions on Neural Networks and Learning Systems}, 
  title={Semi-supervised Cross-scale Graph Prototypical Network for Hyperspectral Image Classification}, 
  year={2022},
  volume={},
  number={},
  pages={1-15},
  doi={10.1109/TNNLS.2022.3158280}}
@ARTICLE{Xi_2020JSTARS_DPN,
  author={Xi, Bobo and Li, Jiaojiao and Li, Yunsong and Song, Rui and Shi, Yanzi and Liu, Songlin and Du, Qian},
  journal={IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing}, 
  title={Deep Prototypical Networks With Hybrid Residual Attention for Hyperspectral Image Classification}, 
  year={2020},
  volume={13},
  number={},
  pages={3683-3700},
  doi={10.1109/JSTARS.2020.3004973}}

Licensing

Copyright (C) 2021 Bobo Xi

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 3 of the License.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program.

About

Semi-Supervised Graph Prototypical Networks for Hyperspectral Image Classification, IGARSS, 2021.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages