Skip to content

Commit

Permalink
Merge pull request #31 from ZacharyHampton/v0.3
Browse files Browse the repository at this point in the history
v0.3
  • Loading branch information
ZacharyHampton authored Oct 5, 2023
2 parents 8388d47 + 2d092c5 commit 4a11164
Show file tree
Hide file tree
Showing 17 changed files with 794 additions and 1,284 deletions.
208 changes: 113 additions & 95 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
<img src="https://github.com/ZacharyHampton/HomeHarvest/assets/78247585/d1a2bf8b-09f5-4c57-b33a-0ada8a34f12d" width="400">

**HomeHarvest** is a simple, yet comprehensive, real estate scraping library.
**HomeHarvest** is a simple, yet comprehensive, real estate scraping library that extracts and formats data in the style of MLS listings.

[![Try with Replit](https://replit.com/badge?caption=Try%20with%20Replit)](https://replit.com/@ZacharyHampton/HomeHarvestDemo)

Expand All @@ -11,10 +11,14 @@

Check out another project we wrote: ***[JobSpy](https://github.com/cullenwatson/JobSpy)** – a Python package for job scraping*

## Features
## HomeHarvest Features

- Scrapes properties from **Zillow**, **Realtor.com** & **Redfin** simultaneously
- Aggregates the properties in a Pandas DataFrame
- **Source**: Fetches properties directly from **Realtor.com**.
- **Data Format**: Structures data to resemble MLS listings.
- **Export Flexibility**: Options to save as either CSV or Excel.
- **Usage Modes**:
- **CLI**: For users who prefer command-line operations.
- **Python**: For those who'd like to integrate scraping into their Python scripts.

[Video Guide for HomeHarvest](https://youtu.be/JnV7eR2Ve2o) - _updated for release v0.2.7_

Expand All @@ -31,136 +35,150 @@ pip install homeharvest

### CLI

```
usage: homeharvest [-l {for_sale,for_rent,sold}] [-o {excel,csv}] [-f FILENAME] [-p PROXY] [-d DAYS] [-r RADIUS] [-m] location
Home Harvest Property Scraper
positional arguments:
location Location to scrape (e.g., San Francisco, CA)
options:
-l {for_sale,for_rent,sold}, --listing_type {for_sale,for_rent,sold}
Listing type to scrape
-o {excel,csv}, --output {excel,csv}
Output format
-f FILENAME, --filename FILENAME
Name of the output file (without extension)
-p PROXY, --proxy PROXY
Proxy to use for scraping
-d DAYS, --days DAYS Sold/listed in last _ days filter.
-r RADIUS, --radius RADIUS
Get comparable properties within _ (eg. 0.0) miles. Only applicable for individual addresses.
-m, --mls_only If set, fetches only MLS listings.
```
```bash
homeharvest "San Francisco, CA" -s zillow realtor.com redfin -l for_rent -o excel -f HomeHarvest
> homeharvest "San Francisco, CA" -l for_rent -o excel -f HomeHarvest
```

This will scrape properties from the specified sites for the given location and listing type, and save the results to an Excel file named `HomeHarvest.xlsx`.

By default:
- If `-s` or `--site_name` is not provided, it will scrape from all available sites.
- If `-l` or `--listing_type` is left blank, the default is `for_sale`. Other options are `for_rent` or `sold`.
- The `-o` or `--output` default format is `excel`. Options are `csv` or `excel`.
- If `-f` or `--filename` is left blank, the default is `HomeHarvest_<current_timestamp>`.
- If `-p` or `--proxy` is not provided, the scraper uses the local IP.
- Use `-k` or `--keep_duplicates` to keep duplicate properties based on address. If not provided, duplicates will be removed.
### Python
### Python

```py
from homeharvest import scrape_property
import pandas as pd
from datetime import datetime

# Generate filename based on current timestamp
current_timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"output/{current_timestamp}.csv"

properties: pd.DataFrame = scrape_property(
site_name=["zillow", "realtor.com", "redfin"],
location="85281",
listing_type="for_rent" # for_sale / sold
properties = scrape_property(
location="San Diego, CA",
listing_type="sold", # or (for_sale, for_rent)
property_younger_than=30, # sold in last 30 days - listed in last x days if (for_sale, for_rent)
mls_only=True, # only fetch MLS listings
)
print(f"Number of properties: {len(properties)}")

#: Note, to export to CSV or Excel, use properties.to_csv() or properties.to_excel().
print(properties)
# Export to csv
properties.to_csv(filename, index=False)
print(properties.head())
```

## Output
```py
```plaintext
>>> properties.head()
property_url site_name listing_type apt_min_price apt_max_price ...
0 https://www.redfin.com/AZ/Tempe/1003-W-Washing... redfin for_rent 1666.0 2750.0 ...
1 https://www.redfin.com/AZ/Tempe/VELA-at-Town-L... redfin for_rent 1665.0 3763.0 ...
2 https://www.redfin.com/AZ/Tempe/Camden-Tempe/a... redfin for_rent 1939.0 3109.0 ...
3 https://www.redfin.com/AZ/Tempe/Emerson-Park/a... redfin for_rent 1185.0 1817.0 ...
4 https://www.redfin.com/AZ/Tempe/Rio-Paradiso-A... redfin for_rent 1470.0 2235.0 ...
[5 rows x 41 columns]
MLS MLS # Status Style ... COEDate LotSFApx PrcSqft Stories
0 SDCA 230018348 SOLD CONDOS ... 2023-10-03 290110 803 2
1 SDCA 230016614 SOLD TOWNHOMES ... 2023-10-03 None 838 3
2 SDCA 230016367 SOLD CONDOS ... 2023-10-03 30056 649 1
3 MRCA NDP2306335 SOLD SINGLE_FAMILY ... 2023-10-03 7519 661 2
4 SDCA 230014532 SOLD CONDOS ... 2023-10-03 None 752 1
[5 rows x 22 columns]
```

### Parameters for `scrape_properties()`
```plaintext
### Parameters for `scrape_property()`
```
Required
├── location (str): address in various formats e.g. just zip, full address, city/state, etc.
└── listing_type (enum): for_rent, for_sale, sold
├── location (str): The address in various formats - this could be just a zip code, a full address, or city/state, etc.
└── listing_type (option): Choose the type of listing.
- 'for_rent'
- 'for_sale'
- 'sold'
Optional
├── site_name (list[enum], default=all three sites): zillow, realtor.com, redfin
├── proxy (str): in format 'http://user:pass@host:port' or [https, socks]
└── keep_duplicates (bool, default=False): whether to keep or remove duplicate properties based on address
```
├── radius (decimal): Radius in miles to find comparable properties based on individual addresses.
│ Example: 5.5 (fetches properties within a 5.5-mile radius if location is set to a specific address; otherwise, ignored)
├── property_younger_than (integer): Number of past days to filter properties. Utilizes 'last_sold_date' for 'sold' listing types, and 'list_date' for others (for_rent, for_sale).
│ Example: 30 (fetches properties listed/sold in the last 30 days)
├── mls_only (True/False): If set, fetches only MLS listings (mainly applicable to 'sold' listings)
└── proxy (string): In format 'http://user:pass@host:port'
```
### Property Schema
```plaintext
Property
├── Basic Information:
├── property_url (str)
├── site_name (enum): zillow, redfin, realtor.com
├── listing_type (enum): for_sale, for_rent, sold
└── property_type (enum): house, apartment, condo, townhouse, single_family, multi_family, building
│ ├── property_url
│ ├── mls
│ ├── mls_id
│ └── status
├── Address Details:
│ ├── street_address (str)
│ ├── city (str)
│ ├── state (str)
│ ├── zip_code (str)
│ ├── unit (str)
│ └── country (str)
├── House for Sale Features:
│ ├── tax_assessed_value (int)
│ ├── lot_area_value (float)
│ ├── lot_area_unit (str)
│ ├── stories (int)
│ ├── year_built (int)
│ └── price_per_sqft (int)
├── Building for Sale and Apartment Details:
│ ├── bldg_name (str)
│ ├── beds_min (int)
│ ├── beds_max (int)
│ ├── baths_min (float)
│ ├── baths_max (float)
│ ├── sqft_min (int)
│ ├── sqft_max (int)
│ ├── price_min (int)
│ ├── price_max (int)
│ ├── area_min (int)
│ └── unit_count (int)
├── Miscellaneous Details:
│ ├── mls_id (str)
│ ├── agent_name (str)
│ ├── img_src (str)
│ ├── description (str)
│ ├── status_text (str)
│ └── posted_time (str)
└── Location Details:
├── latitude (float)
└── longitude (float)
│ ├── street
│ ├── unit
│ ├── city
│ ├── state
│ └── zip_code
├── Property Description:
│ ├── style
│ ├── beds
│ ├── full_baths
│ ├── half_baths
│ ├── sqft
│ ├── year_built
│ ├── stories
│ └── lot_sqft
├── Property Listing Details:
│ ├── list_price
│ ├── list_date
│ ├── sold_price
│ ├── last_sold_date
│ ├── price_per_sqft
│ └── hoa_fee
├── Location Details:
│ ├── latitude
│ ├── longitude
└── Parking Details:
└── parking_garage
```
## Supported Countries for Property Scraping

* **Zillow**: contains listings in the **US** & **Canada**
* **Realtor.com**: mainly from the **US** but also has international listings
* **Redfin**: listings mainly in the **US**, **Canada**, & has expanded to some areas in **Mexico**

### Exceptions
The following exceptions may be raised when using HomeHarvest:

- `InvalidSite` - valid options: `zillow`, `redfin`, `realtor.com`
- `InvalidListingType` - valid options: `for_sale`, `for_rent`, `sold`
- `NoResultsFound` - no properties found from your input
- `GeoCoordsNotFound` - if Zillow scraper is not able to derive geo-coordinates from the location you input

- `NoResultsFound` - no properties found from your search
## Frequently Asked Questions

---

**Q: Encountering issues with your queries?**
**A:** Try a single site and/or broaden the location. If problems persist, [submit an issue](https://github.com/ZacharyHampton/HomeHarvest/issues).
**Q: Encountering issues with your searches?**
**A:** Try to broaden the parameters you're using. If problems persist, [submit an issue](https://github.com/ZacharyHampton/HomeHarvest/issues).

---

**Q: Received a Forbidden 403 response code?**
**A:** This indicates that you have been blocked by the real estate site for sending too many requests. Currently, **Zillow** is particularly aggressive with blocking. We recommend:
**A:** This indicates that you have been blocked by Realtor.com for sending too many requests. We recommend:

- Waiting a few seconds between requests.
- Trying a VPN to change your IP address.
- Trying a VPN or useing a proxy as a parameter to scrape_property() to change your IP address.

---

5 changes: 1 addition & 4 deletions HomeHarvest_Demo.ipynb → examples/HomeHarvest_Demo.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@
"metadata": {},
"outputs": [],
"source": [
"# scrapes all 3 sites by default\n",
"# check for sale properties\n",
"scrape_property(\n",
" location=\"dallas\",\n",
" listing_type=\"for_sale\"\n",
Expand All @@ -53,7 +53,6 @@
"# search a specific address\n",
"scrape_property(\n",
" location=\"2530 Al Lipscomb Way\",\n",
" site_name=\"zillow\",\n",
" listing_type=\"for_sale\"\n",
")"
]
Expand All @@ -68,7 +67,6 @@
"# check rentals\n",
"scrape_property(\n",
" location=\"chicago, illinois\",\n",
" site_name=[\"redfin\", \"zillow\"],\n",
" listing_type=\"for_rent\"\n",
")"
]
Expand All @@ -88,7 +86,6 @@
"# check sold properties\n",
"scrape_property(\n",
" location=\"90210\",\n",
" site_name=[\"redfin\"],\n",
" listing_type=\"sold\"\n",
")"
]
Expand Down
18 changes: 18 additions & 0 deletions examples/HomeHarvest_Demo.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
from homeharvest import scrape_property
from datetime import datetime

# Generate filename based on current timestamp
current_timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"output/{current_timestamp}.csv"

properties = scrape_property(
location="San Diego, CA",
listing_type="sold", # for_sale, for_rent
property_younger_than=30, # sold/listed in last 30 days
mls_only=True, # only fetch MLS listings
)
print(f"Number of properties: {len(properties)}")

# Export to csv
properties.to_csv(filename, index=False)
print(properties.head())
Loading

0 comments on commit 4a11164

Please sign in to comment.