Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: ONNX exportability compatibity test and fix #275

Merged
merged 2 commits into from
Nov 26, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -62,6 +62,7 @@ dev = [
"pre-commit",
"pytest",
"pytest-cov",
"onnx",
"sybil", # doctesting
]

Expand Down
10 changes: 6 additions & 4 deletions src/careamics/models/layers.py
Original file line number Diff line number Diff line change
Expand Up @@ -459,7 +459,8 @@ def __init__(
self.stride = stride
self.max_pool_size = max_pool_size
self.ceil_mode = ceil_mode
self.kernel = _get_pascal_kernel_nd(kernel_size, norm=True, dim=self.dim)
kernel = _get_pascal_kernel_nd(kernel_size, norm=True, dim=self.dim)
self.register_buffer("kernel", kernel, persistent=False)

def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass of the function.
Expand All @@ -474,19 +475,20 @@ def forward(self, x: torch.Tensor) -> torch.Tensor:
torch.Tensor
Output tensor.
"""
self.kernel = torch.as_tensor(self.kernel, device=x.device, dtype=x.dtype)
kernel = self.kernel.to(dtype=x.dtype)
num_channels = int(x.size(1))
if self.dim == 2:
return _max_blur_pool_by_kernel2d(
x,
self.kernel.repeat((x.size(1), 1, 1, 1)),
kernel.repeat((num_channels, 1, 1, 1)),
self.stride,
self.max_pool_size,
self.ceil_mode,
)
else:
return _max_blur_pool_by_kernel3d(
x,
self.kernel.repeat((x.size(1), 1, 1, 1, 1)),
kernel.repeat((num_channels, 1, 1, 1, 1)),
self.stride,
self.max_pool_size,
self.ceil_mode,
Expand Down
59 changes: 59 additions & 0 deletions tests/lightning/test_lightning_module_onnx_exportability.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
import pytest
import torch
from onnx import checker

from careamics.config import FCNAlgorithmConfig
from careamics.lightning.lightning_module import FCNModule


@pytest.mark.parametrize(
"algorithm, architecture, conv_dim, n2v2, loss, shape",
[
("n2n", "UNet", 2, False, "mae", (16, 16)), # n2n 2D model
("n2n", "UNet", 3, False, "mae", (8, 16, 16)), # n2n 3D model
("n2v", "UNet", 2, False, "n2v", (16, 16)), # n2v 2D model
("n2v", "UNet", 3, False, "n2v", (8, 16, 16)), # n2v 3D model
("n2v", "UNet", 2, True, "n2v", (16, 16)), # n2v2 2D model
("n2v", "UNet", 3, True, "n2v", (8, 16, 16)), # n2v2 3D model
],
)
def test_onnx_export(tmp_path, algorithm, architecture, conv_dim, n2v2, loss, shape):
"""Test model exportability to ONNX."""

algo_config = {
"algorithm": algorithm,
"model": {
"architecture": architecture,
"conv_dims": conv_dim,
"in_channels": 1,
"num_classes": 1,
"depth": 3,
"n2v2": n2v2,
},
"loss": loss,
}
algo_config = FCNAlgorithmConfig(**algo_config)

# instantiate CAREamicsKiln
model = FCNModule(algo_config)
# set model to evaluation mode to avoid batch dimension error
model.model.eval()
# create a sample input of BC(Z)XY
x = torch.rand((1, 1, *shape))

# create dynamic axes from the shape of the x
dynamic_axes = {"input": {}, "output": {}}
for i in range(len(x.shape)):
dynamic_axes["input"][i] = f"dim_{i}"
dynamic_axes["output"][i] = f"dim_{i}"

torch.onnx.export(
model,
x,
f"{tmp_path}/test_model.onnx",
input_names=["input"], # the model's input names
output_names=["output"], # the model's output names
dynamic_axes=dynamic_axes, # variable length axes,
)

checker.check_model(f"{tmp_path}/test_model.onnx")