Skip to content

CDev-io/SimpleInfer

 
 

Repository files navigation

SimpleInfer

SimpleInfer is a neural network inference framework based on KuiperInfer.

Build

SimpleInfer uses xmake to build library and tests.

git clone --recursive https://github.com/zpye/SimpleInfer.git
cd SimpleInfer
xmake config -a x64 -m release
xmake -w --all

Run

After building successfully, run test-yolo to check.

xmake run test-yolo

YOLO Result

Here are visualized results of YOLO detection.

result_31.jpg

result_bus.jpg

result_car.jpg

result_zidane.jpg

Working With Python

  1. Set environment PYTHON_ROOT where python binary exists, pybind11 needs ${PYTHON_ROOT}/include and ${PYTHON_ROOT}/libs for compiling and linking.

  2. Set --build_python=true after xmake config and build:

xmake config -a x64 -m release --build_python=true
xmake -w --all
  1. install package by pip:
pip install build/python/
  1. run python test:
python test/test_python/test_model.py

(Experimental) Halide Programming

Note: Only upsample nearest layer has an implementation of Halide.

  1. Set environment HALIDE_ROOT for Halide installation path, using release packages from https://github.com/halide/Halide/releases is a good choice.

  2. Set --halide=true after xmake config and build:

xmake config -a x64 -m release --halide=true
xmake build halide_layers
xmake -w --all

Reference

KuiperInfer -> basic framework

ncnn, simpleocv -> pnnx ir, simpleocv and mat-pixel operations

Eigen, tensorflow -> Eigen tensor

abseil -> logging, string format operations

CGraph -> graph based pipeline

highway, Simd -> SIMD, GEMM, Winograd, parallel

benchmark, Catch2 -> benchmark and unit tests

pybind11 -> python bindings of c++

stb -> image loader and image writer

Halide -> Halide programming

tmp -> pnnx models

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 98.5%
  • Lua 1.2%
  • Python 0.3%