-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
328 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,328 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from IPython.display import HTML\n", | ||
"from matplotlib import pyplot as plt\n", | ||
"import jax.numpy as jnp\n", | ||
"import numpy as np\n", | ||
"import exponax as ex\n", | ||
"import jax\n", | ||
"import cmasher\n", | ||
"\n", | ||
"import seaborn as sns\n", | ||
"sns.set_theme()\n", | ||
"\n", | ||
"from vape import diverging_alpha,render,viewer" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"\n", | ||
"cmap_linear = cmasher.watermelon\n", | ||
"cmap_nonlinear = sns.color_palette(\"icefire\", as_cmap=True)\n", | ||
"cmap_diff = cmasher.copper_s\n", | ||
"cmap_diff" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"resolution = 1024\n", | ||
"fps = 30" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"\n", | ||
"import copy\n", | ||
"from matplotlib.colors import LinearSegmentedColormap, ListedColormap\n", | ||
"\n", | ||
"\n", | ||
"def triangle_wave(x,p):\n", | ||
" return 2*np.abs(x/p-np.floor(x/p+0.5)) \n", | ||
"\n", | ||
"\n", | ||
"def zigzag_alpha(cmap,min_alpha=0.2):\n", | ||
" \"\"\"changes the alpha channel of a colormap to be linear (0->0, 1->1)\n", | ||
"\n", | ||
" Args:\n", | ||
" cmap (Colormap): colormap\n", | ||
"\n", | ||
" Returns:a\n", | ||
" Colormap: new colormap\n", | ||
" \"\"\"\n", | ||
" if isinstance(cmap, ListedColormap):\n", | ||
" colors = copy.deepcopy(cmap.colors)\n", | ||
" for i, a in enumerate(colors):\n", | ||
" a.append((triangle_wave(i / (cmap.N - 1),0.5)*(1-min_alpha))+min_alpha)\n", | ||
" return ListedColormap(colors, cmap.name)\n", | ||
" elif isinstance(cmap, LinearSegmentedColormap):\n", | ||
" segmentdata = copy.deepcopy(cmap._segmentdata)\n", | ||
" segmentdata[\"alpha\"] = np.array([\n", | ||
" [0.0, 0.0, 0.0],\n", | ||
" [0.25, 1.0, 1.0],\n", | ||
" [0.5, 0.0, 0.0],\n", | ||
" [0.75, 1.0, 1.0],\n", | ||
" [1.0, 0.0, 0.0]]\n", | ||
" )\n", | ||
" return LinearSegmentedColormap(cmap.name,segmentdata)\n", | ||
" else:\n", | ||
" raise TypeError(\n", | ||
" \"cmap must be either a ListedColormap or a LinearSegmentedColormap\"\n", | ||
" )\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from IPython.display import Video\n", | ||
"import imageio.v2 as iio\n", | ||
"import os\n", | ||
"from tqdm import tqdm\n", | ||
"os.environ[\"IMAGEIO_FFMPEG_EXE\"] = \"ffmpeg\" \n", | ||
"\n", | ||
"def symmetric_min_max(arr):\n", | ||
" vmin = arr.min().item()\n", | ||
" vmax = arr.max().item()\n", | ||
" absmax = max(abs(vmin), abs(vmax))\n", | ||
" return -absmax, absmax\n", | ||
"\n", | ||
"def chunk_list(lst, n):\n", | ||
" for i in range(0, len(lst), n):\n", | ||
" yield lst[i:i + n]\n", | ||
" \n", | ||
"def create_video(out_file:str,volume, cmap,resolution=1024, duration=10, fps=30, vrange=None) -> Video:\n", | ||
" \"\"\"\n", | ||
" Create a video from a volume\n", | ||
" \n", | ||
" Args:\n", | ||
" out_file (str): output file\n", | ||
" volume (np.ndarray): volume of shape [N,C,H,W,D]\n", | ||
" cmap (Colormap): colormap\n", | ||
" resolution (int): video width and height in pixels\n", | ||
" duration (int): duration in seconds\n", | ||
" fps (int): frames per second\n", | ||
" vrange (float): range of values to display\n", | ||
" \"\"\"\n", | ||
" if vrange is None:\n", | ||
" vmin, vmax = symmetric_min_max(volume)\n", | ||
" elif isinstance(vrange, (int, float)):\n", | ||
" vmin, vmax = -vrange, vrange\n", | ||
" elif isinstance(vrange, (tuple, list)):\n", | ||
" vmin, vmax = vrange\n", | ||
" else:\n", | ||
" raise ValueError(\"vrange must be None, a number, or a tuple of two numbers\")\n", | ||
" \n", | ||
" num_channels = volume.shape[1]\n", | ||
" n = duration*fps\n", | ||
" \n", | ||
" print(\"num_channels=\",num_channels,\", vmin=\",vmin,\",vmax=\",vmax)\n", | ||
"\n", | ||
" with iio.get_writer(out_file, format='FFMPEG', mode='I', fps=fps,codec='h264_nvenc',) as w:\n", | ||
" batch_size = 64 # how many frames to store in memory at once\n", | ||
" for time_steps in tqdm(list(chunk_list(list(range(n)), batch_size))):\n", | ||
" frames = np.zeros((len(time_steps), resolution, resolution*num_channels, 3), dtype=np.uint8)\n", | ||
" for c in range(num_channels):\n", | ||
" imgs = render(\n", | ||
" np.array(volume[:, c]),\n", | ||
" cmap,\n", | ||
" [i / (n-1) for i in time_steps],\n", | ||
" background=(0, 0, 0, 255),\n", | ||
" distance_scale=10,\n", | ||
" vmin=vmin,\n", | ||
" vmax=vmax,\n", | ||
" width=resolution,\n", | ||
" height=resolution,\n", | ||
" )\n", | ||
" # gamma correction\n", | ||
" imgs = ((imgs/255.)**(2.4)*255).astype(np.uint8)\n", | ||
" frames[:,:,resolution*c:resolution*(c+1)] = imgs[..., :3]\n", | ||
" for img in frames:\n", | ||
" w.append_data(img)\n", | ||
"\n", | ||
" w.close()\n", | ||
" return Video(url=out_file)\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"\n", | ||
"from os import makedirs\n", | ||
"\n", | ||
"\n", | ||
"def symmetric_min_max(arr):\n", | ||
" vmin = arr.min().item()\n", | ||
" vmax = arr.max().item()\n", | ||
" absmax = max(abs(vmin), abs(vmax))\n", | ||
" return -absmax,absmax\n", | ||
"#\n", | ||
"\n", | ||
"\n", | ||
"DOMAIN_EXTENT = 1.0\n", | ||
"NUM_POINTS = 64\n", | ||
"DT = 0.01\n", | ||
"NU = 0.01\n", | ||
"\n", | ||
"burgers_stepper = ex.stepper.Burgers(3, DOMAIN_EXTENT, NUM_POINTS, DT, diffusivity=NU)\n", | ||
"\n", | ||
"grid = ex.make_grid(3, DOMAIN_EXTENT, NUM_POINTS)\n", | ||
"\n", | ||
"\n", | ||
"ic_gen = ex.ic.RandomTruncatedFourierSeries(3, cutoff=2, max_one=True)\n", | ||
"multi_channel_ic_gen = ex.ic.RandomMultiChannelICGenerator([ic_gen, ic_gen, ic_gen])\n", | ||
"u_0 = multi_channel_ic_gen(NUM_POINTS, key=jax.random.PRNGKey(1))\n", | ||
"\n", | ||
"burgers_trj_3d = ex.rollout(burgers_stepper, 128, include_init=True)(u_0)\n", | ||
"\n", | ||
"makedirs(\"videos\", exist_ok=True)\n", | ||
"create_video(\"videos/burgers.mp4\",burgers_trj_3d,zigzag_alpha(cmap_nonlinear, 0.1),resolution=resolution, duration=10, fps=fps, vrange=0.4)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"DOMAIN_EXTENT = 1.0\n", | ||
"NUM_POINTS = 64\n", | ||
"DT = 0.01\n", | ||
"VELOCITY = 1.0\n", | ||
"\n", | ||
"advection_stepper = ex.stepper.Advection(\n", | ||
" 3,\n", | ||
" DOMAIN_EXTENT,\n", | ||
" NUM_POINTS,\n", | ||
" DT,\n", | ||
" velocity=np.array([VELOCITY * 2, VELOCITY * 0.4, VELOCITY]),\n", | ||
")\n", | ||
"\n", | ||
"u_0 = ex.ic.DiffusedNoise(3, max_one=True, zero_mean=True)(\n", | ||
" NUM_POINTS, key=jax.random.PRNGKey(0)\n", | ||
")\n", | ||
"advection_trj_3d = ex.rollout(advection_stepper, 64, include_init=True)(u_0)\n", | ||
"\n", | ||
"create_video(\"videos/advection.mp4\",advection_trj_3d,zigzag_alpha(cmap_linear, 0.1),resolution=resolution, duration=10, fps=fps, vrange=0.5)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"DOMAIN_EXTENT = 30.0\n", | ||
"NUM_POINTS = 64\n", | ||
"DT = 0.1\n", | ||
"\n", | ||
"ks_stepper = ex.stepper.KuramotoSivashinsky(3, DOMAIN_EXTENT, NUM_POINTS, DT)\n", | ||
"\n", | ||
"# IC is irrelevant\n", | ||
"u_0 = jax.random.normal(jax.random.PRNGKey(0), (1, NUM_POINTS, NUM_POINTS, NUM_POINTS))\n", | ||
"warmed_up_u_0 = ex.repeat(ks_stepper, 500)(u_0)\n", | ||
"ks_trj_3d = ex.rollout(ks_stepper, 64, include_init=True)(warmed_up_u_0)\n", | ||
"\n", | ||
"create_video(\"videos/ks.mp4\",ks_trj_3d,zigzag_alpha(cmap_nonlinear, 0.1),resolution=resolution, duration=10, fps=fps, vrange=3.0)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"DOMAIN_EXTENT = 1.0\n", | ||
"NUM_POINTS = 64\n", | ||
"DT = 30.0\n", | ||
"DIFFUSIVITY_0 = 2e-5\n", | ||
"DIFFUSIVITY_1 = 1e-5\n", | ||
"FEED_RATE = 0.04\n", | ||
"KILL_RATE = 0.06\n", | ||
"\n", | ||
"gray_scott_stepper = ex.RepeatedStepper(\n", | ||
" ex.reaction.GrayScott(\n", | ||
" 3,\n", | ||
" DOMAIN_EXTENT,\n", | ||
" NUM_POINTS,\n", | ||
" DT / 30,\n", | ||
" diffusivity_1=DIFFUSIVITY_0,\n", | ||
" diffusivity_2=DIFFUSIVITY_1,\n", | ||
" feed_rate=FEED_RATE,\n", | ||
" kill_rate=KILL_RATE,\n", | ||
" ),\n", | ||
" 15,\n", | ||
")\n", | ||
"\n", | ||
"u_0 = ex.ic.RandomMultiChannelICGenerator(\n", | ||
" [\n", | ||
" ex.ic.RandomGaussianBlobs(3, one_complement=True, num_blobs=1),\n", | ||
" ex.ic.RandomGaussianBlobs(3, num_blobs=1),\n", | ||
" ]\n", | ||
")(NUM_POINTS, key=jax.random.PRNGKey(0))\n", | ||
"\n", | ||
"gray_scott_trj_3d = ex.rollout(gray_scott_stepper, 128, include_init=True)(u_0)\n", | ||
"\n", | ||
"\n", | ||
"create_video(\"videos/gray_scott.mp4\",gray_scott_trj_3d,zigzag_alpha(cmap_diff, 0.0),resolution=resolution, duration=10, fps=fps, vrange=(0,1))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "ano", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.12.3" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |