Skip to content

Exploiting Hybrid Policy in Reinforcement Learning for Interpretable Temporal Logic Manipulation

License

Notifications You must be signed in to change notification settings

Charlie0257/HyTL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

HyTL (IROS 2024 Oral Presentation 15min)

Website Arxiv Hits GitHub license

Exploiting Hybrid Policy in Reinforcement Learning for Interpretable Temporal Logic Manipulation

If any questions, feel free to contact: zcharlie0257@gmail.com.

Installation instructions

conda create -n hytl python=3.8
conda activate hytl

cd HyTL/

pip install -e .

conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch

git clone -b maple https://github.com/ARISE-Initiative/robosuite
cd robosuite/
pip install -e .
cd ..

pip install python-dateutil
pip install h5py
pip install gym==0.23.1
pip install gtimer
pip install sympy
conda install -c conda-forge spot
pip install torch_ac
pip install gymnasium
pip install ring
pip install dgl==1.1.2 -f https://data.dgl.ai/wheels/cu113/repo.html
pip install dglgo -f https://data.dgl.ai/wheels-test/repo.html
pip install numpy==1.23
pip install opencv-python
pip install scikit-video
pip install imageio[ffmpeg]
pip install imageio[pyav]
pip install matplotlib

pip install chardet

Instructions for Reproducing Results

We recorded the following videos to visualize our simulation results for four long-horizon manipulations. The full training videos and evaluation videos are published in the Dataset.

Example for Main results

Stack

cd scripts/
python train.py --env stack --LTL --waypoint --map_goal --path_max_len 6 --d_out 16 --way_weight 10.

Nut Assembly

cd scripts/
python train.py --env cleanup --LTL --waypoint --map_goal --path_max_len 6 --d_out 16 --way_weight 5

CleanUp

cd scripts/
python train.py --env stack --LTL --waypoint --map_goal --path_max_len 6 --d_out 16 --way_weight 10.

Peg Insertion

cd scripts/
python train.py --env peg_ins --LTL --waypoint --map_goal --path_max_len 4 --d_out 32

Acknowledgement

Much of this codebase is inspired by MAPLE and T2TL.

Citation

@INPROCEEDINGS{10802202,
  author={Zhang, Hao and Wang, Hao and Huang, Xiucai and Chen, Wenrui and Kan, Zhen},
  booktitle={2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)}, 
  title={Exploiting Hybrid Policy in Reinforcement Learning for Interpretable Temporal Logic Manipulation}, 
  year={2024},
  volume={},
  number={},
  pages={13795-13800},
  keywords={Decision making;Semantics;Reinforcement learning;Robot learning;Planning;Logic;Intelligent robots;Convergence},
  doi={10.1109/IROS58592.2024.10802202}}

About

Exploiting Hybrid Policy in Reinforcement Learning for Interpretable Temporal Logic Manipulation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages