Exploiting Hybrid Policy in Reinforcement Learning for Interpretable Temporal Logic Manipulation
If any questions, feel free to contact: zcharlie0257@gmail.com.conda create -n hytl python=3.8
conda activate hytl
cd HyTL/
pip install -e .
conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch
git clone -b maple https://github.com/ARISE-Initiative/robosuite
cd robosuite/
pip install -e .
cd ..
pip install python-dateutil
pip install h5py
pip install gym==0.23.1
pip install gtimer
pip install sympy
conda install -c conda-forge spot
pip install torch_ac
pip install gymnasium
pip install ring
pip install dgl==1.1.2 -f https://data.dgl.ai/wheels/cu113/repo.html
pip install dglgo -f https://data.dgl.ai/wheels-test/repo.html
pip install numpy==1.23
pip install opencv-python
pip install scikit-video
pip install imageio[ffmpeg]
pip install imageio[pyav]
pip install matplotlib
pip install chardet
We recorded the following videos to visualize our simulation results for four long-horizon manipulations. The full training videos and evaluation videos are published in the Dataset.
cd scripts/
python train.py --env stack --LTL --waypoint --map_goal --path_max_len 6 --d_out 16 --way_weight 10.
cd scripts/
python train.py --env cleanup --LTL --waypoint --map_goal --path_max_len 6 --d_out 16 --way_weight 5
cd scripts/
python train.py --env stack --LTL --waypoint --map_goal --path_max_len 6 --d_out 16 --way_weight 10.
cd scripts/
python train.py --env peg_ins --LTL --waypoint --map_goal --path_max_len 4 --d_out 32
Much of this codebase is inspired by MAPLE and T2TL.
@INPROCEEDINGS{10802202,
author={Zhang, Hao and Wang, Hao and Huang, Xiucai and Chen, Wenrui and Kan, Zhen},
booktitle={2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
title={Exploiting Hybrid Policy in Reinforcement Learning for Interpretable Temporal Logic Manipulation},
year={2024},
volume={},
number={},
pages={13795-13800},
keywords={Decision making;Semantics;Reinforcement learning;Robot learning;Planning;Logic;Intelligent robots;Convergence},
doi={10.1109/IROS58592.2024.10802202}}