-
Notifications
You must be signed in to change notification settings - Fork 10
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
14 changed files
with
1,309 additions
and
72 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,270 @@ | ||
import SciMLBase | ||
using CairoMakie | ||
using Statistics | ||
using Dates | ||
using Insolation | ||
|
||
# Load CliMA Packages and ClimaLand Modules: | ||
|
||
using ClimaCore | ||
import ClimaParams as CP | ||
import ClimaTimeSteppers as CTS | ||
using StaticArrays | ||
using ClimaLand | ||
using ClimaLand.Domains: Point | ||
using ClimaLand.Canopy | ||
using ClimaLand.Canopy.PlantHydraulics | ||
import ClimaLand | ||
import ClimaLand.Parameters as LP | ||
const FT = Float32; | ||
earth_param_set = LP.LandParameters(FT); | ||
f_root_to_shoot = FT(3.5) | ||
SAI = FT(0.0) | ||
plant_ν = FT(2.46e-4) # kg/m^2 | ||
n_stem = Int64(0) | ||
n_leaf = Int64(1) | ||
h_leaf = FT(9.5) | ||
compartment_midpoints = [h_leaf / 2] | ||
compartment_surfaces = [FT(0), h_leaf] | ||
land_domain = Point(; z_sfc = FT(0.0)) | ||
include( | ||
joinpath(pkgdir(ClimaLand), "experiments/integrated/fluxnet/data_tools.jl"), | ||
); | ||
time_offset = 7 | ||
lat = FT(38.7441) # degree | ||
long = FT(-92.2000) # degree | ||
atmos_h = FT(32) | ||
site_ID = "US-MOz" | ||
data_link = "https://caltech.box.com/shared/static/7r0ci9pacsnwyo0o9c25mhhcjhsu6d72.csv" | ||
|
||
include( | ||
joinpath( | ||
pkgdir(ClimaLand), | ||
"experiments/integrated/fluxnet/met_drivers_FLUXNET.jl", | ||
), | ||
); | ||
|
||
z0_m = FT(2) | ||
z0_b = FT(0.2) | ||
|
||
shared_params = SharedCanopyParameters{FT, typeof(earth_param_set)}( | ||
z0_m, | ||
z0_b, | ||
earth_param_set, | ||
); | ||
ψ_soil0 = FT(0.0) | ||
|
||
soil_driver = PrescribedSoil( | ||
FT; | ||
root_depths = SVector{10, FT}(-(10:-1:1.0) ./ 10.0 * 2.0 .+ 0.2 / 2.0), | ||
ψ = t -> ψ_soil0, | ||
α_PAR = FT(0.2), | ||
α_NIR = FT(0.4), | ||
T = t -> 298.0, | ||
ϵ = FT(0.99), | ||
); | ||
|
||
rt_params = TwoStreamParameters( | ||
FT; | ||
G_Function = ConstantGFunction(FT(0.5)), | ||
α_PAR_leaf = FT(0.1), | ||
α_NIR_leaf = FT(0.45), | ||
τ_PAR_leaf = FT(0.05), | ||
τ_NIR_leaf = FT(0.25), | ||
Ω = FT(0.69), | ||
λ_γ_PAR = FT(5e-7), | ||
λ_γ_NIR = FT(1.65e-6), | ||
) | ||
|
||
rt_model = TwoStreamModel{FT}(rt_params); | ||
|
||
cond_params = MedlynConductanceParameters(FT; g1 = FT(141.0)) | ||
|
||
stomatal_model = MedlynConductanceModel{FT}(cond_params); | ||
|
||
|
||
photo_params = FarquharParameters(FT, Canopy.C3(); Vcmax25 = FT(5e-5)) | ||
|
||
photosynthesis_model = FarquharModel{FT}(photo_params); | ||
|
||
AR_params = AutotrophicRespirationParameters(FT) | ||
AR_model = AutotrophicRespirationModel{FT}(AR_params); | ||
|
||
function fakeLAIfunction(t) | ||
if t < 30 * 24 * 3600 | ||
0.0 | ||
elseif t < (364 - 30) * 24 * 3600.0 | ||
max(2.0 * sin(2 * π / (730 * 24 * 3600) * (t - 30 * 24 * 3600)), 0) | ||
else | ||
0.0 | ||
end | ||
end | ||
|
||
|
||
f_root_to_shoot = FT(3.5) | ||
SAI = FT(0) | ||
RAI = FT(2 * f_root_to_shoot) | ||
ai_parameterization = | ||
PrescribedSiteAreaIndex{FT}(TimeVaryingInput(fakeLAIfunction), SAI, RAI) | ||
rooting_depth = FT(1.0); | ||
|
||
function root_distribution(z::T; rooting_depth = rooting_depth) where {T} | ||
return T(1.0 / rooting_depth) * exp(z / T(rooting_depth)) | ||
end; | ||
|
||
K_sat_plant = FT(1.8e-8) | ||
ψ63 = FT(-4 / 0.0098) | ||
Weibull_param = FT(4) | ||
a = FT(0.05 * 0.0098) | ||
|
||
conductivity_model = | ||
PlantHydraulics.Weibull{FT}(K_sat_plant, ψ63, Weibull_param) | ||
|
||
retention_model = PlantHydraulics.LinearRetentionCurve{FT}(a); | ||
|
||
ν = FT(0.7) | ||
S_s = FT(1e-2 * 0.0098) | ||
|
||
plant_hydraulics_ps = PlantHydraulics.PlantHydraulicsParameters(; | ||
ai_parameterization = ai_parameterization, | ||
ν = ν, | ||
S_s = S_s, | ||
root_distribution = root_distribution, | ||
conductivity_model = conductivity_model, | ||
retention_model = retention_model, | ||
); | ||
|
||
|
||
plant_hydraulics = PlantHydraulics.PlantHydraulicsModel{FT}(; | ||
parameters = plant_hydraulics_ps, | ||
n_stem = n_stem, | ||
n_leaf = n_leaf, | ||
compartment_surfaces = compartment_surfaces, | ||
compartment_midpoints = compartment_midpoints, | ||
); | ||
|
||
energy_model = ClimaLand.Canopy.BigLeafEnergyModel{FT}( | ||
BigLeafEnergyParameters{FT}(FT(1e3)), | ||
) | ||
|
||
canopy = ClimaLand.Canopy.CanopyModel{FT}(; | ||
parameters = shared_params, | ||
domain = land_domain, | ||
autotrophic_respiration = AR_model, | ||
radiative_transfer = rt_model, | ||
photosynthesis = photosynthesis_model, | ||
conductance = stomatal_model, | ||
energy = energy_model, | ||
hydraulics = plant_hydraulics, | ||
soil_driver = soil_driver, | ||
atmos = atmos, | ||
radiation = radiation, | ||
); | ||
|
||
|
||
Y, p, coords = ClimaLand.initialize(canopy) | ||
exp_tendency! = make_exp_tendency(canopy); | ||
|
||
|
||
ψ_leaf_0 = FT(-2e5 / 9800) | ||
|
||
S_l_ini = inverse_water_retention_curve(retention_model, ψ_leaf_0, ν, S_s) | ||
|
||
Y.canopy.hydraulics.ϑ_l.:1 .= augmented_liquid_fraction.(ν, S_l_ini) | ||
|
||
|
||
|
||
t0 = 0.0 | ||
N_days = 10 | ||
tf = t0 + 3600 * 24 * N_days | ||
dt = 225.0; | ||
evaluate!(Y.canopy.energy.T, atmos.T, t0) | ||
set_initial_cache! = make_set_initial_cache(canopy) | ||
set_initial_cache!(p, Y, t0); | ||
|
||
|
||
n = 16 | ||
saveat = Array(t0:(n * dt):tf) | ||
sv = (; | ||
t = Array{Float64}(undef, length(saveat)), | ||
saveval = Array{NamedTuple}(undef, length(saveat)), | ||
) | ||
saving_cb = ClimaLand.NonInterpSavingCallback(sv, saveat); | ||
|
||
updateat = Array(t0:1800:tf) | ||
updatefunc = ClimaLand.make_update_drivers(atmos, radiation) | ||
driver_cb = ClimaLand.DriverUpdateCallback(updateat, updatefunc) | ||
cb = SciMLBase.CallbackSet(driver_cb, saving_cb); | ||
|
||
timestepper = CTS.RK4(); | ||
ode_algo = CTS.ExplicitAlgorithm(timestepper) | ||
|
||
prob = SciMLBase.ODEProblem( | ||
CTS.ClimaODEFunction(T_exp! = exp_tendency!, dss! = ClimaLand.dss!), | ||
Y, | ||
(t0, tf), | ||
p, | ||
); | ||
|
||
sol = SciMLBase.solve(prob, ode_algo; dt = dt, callback = cb, saveat = saveat); | ||
|
||
savedir = joinpath(pkgdir(ClimaLand), "experiments/standalone/Vegetation"); | ||
T = [parent(sol.u[k].canopy.energy.T)[1] for k in 1:length(sol.t)] | ||
T_atmos = [parent(sv.saveval[k].drivers.T)[1] for k in 1:length(sol.t)] | ||
ϑ = [parent(sol.u[k].canopy.hydraulics.ϑ_l.:1)[1] for k in 1:length(sol.t)] | ||
GPP = [ | ||
parent(sv.saveval[k].canopy.photosynthesis.GPP)[1] * 1e6 for | ||
k in 1:length(sol.t) | ||
] | ||
resp = [ | ||
parent(sv.saveval[k].canopy.autotrophic_respiration.Ra)[1] * 1e6 for | ||
k in 1:length(sol.t) | ||
] | ||
SW_abs = [ | ||
parent(sv.saveval[k].canopy.radiative_transfer.SW_n)[1] for | ||
k in 1:length(sol.t) | ||
] | ||
LW_abs = [ | ||
parent(sv.saveval[k].canopy.radiative_transfer.LW_n)[1] for | ||
k in 1:length(sol.t) | ||
] | ||
SHF = [parent(sv.saveval[k].canopy.energy.shf)[1] for k in 1:length(sol.t)] | ||
LHF = [parent(sv.saveval[k].canopy.energy.lhf)[1] for k in 1:length(sol.t)] | ||
RE = [ | ||
parent(sv.saveval[k].canopy.energy.fa_energy_roots)[1] for | ||
k in 1:length(sol.t) | ||
] | ||
R = [ | ||
parent(sv.saveval[k].canopy.hydraulics.fa_roots)[1] for k in 1:length(sol.t) | ||
] | ||
Tr = [parent(sv.saveval[k].canopy.hydraulics.fa.:1)[1] for k in 1:length(sol.t)] | ||
fig = Figure() | ||
ax = Axis(fig[1, 1], xlabel = "Time (days)", ylabel = "Temperature (K)") | ||
lines!(ax, sol.t ./ 24 ./ 3600, T, label = "Canopy") | ||
lines!(ax, sol.t ./ 24 ./ 3600, T_atmos, label = "Atmos") | ||
axislegend(ax) | ||
ax = Axis(fig[2, 1], xlabel = "Time (days)", ylabel = "Volumetric Water") | ||
lines!(ax, sol.t ./ 24 ./ 3600, ϑ, label = "Canopy") | ||
axislegend(ax) | ||
ax = Axis(fig[3, 1], xlabel = "Time (days)", ylabel = "LAI") | ||
lines!(ax, sol.t ./ 24 ./ 3600, fakeLAIfunction.(sol.t), label = "Canopy") | ||
axislegend(ax) | ||
save(joinpath(savedir, "no_veg_state.png"), fig) | ||
fig2 = Figure() | ||
ax = Axis(fig2[1, 1], xlabel = "Time (days)", ylabel = "Energy Fluxes") | ||
lines!(ax, sol.t ./ 24 ./ 3600, SW_abs, label = "SW") | ||
lines!(ax, sol.t ./ 24 ./ 3600, LW_abs, label = "LW") | ||
lines!(ax, sol.t ./ 24 ./ 3600, SHF, label = "SHF") | ||
lines!(ax, sol.t ./ 24 ./ 3600, LHF, label = "LHF") | ||
lines!(ax, sol.t ./ 24 ./ 3600, RE, label = "RE") | ||
axislegend(ax) | ||
ax = Axis(fig2[2, 1], xlabel = "Time (days)", ylabel = "Water Fluxes") | ||
lines!(ax, sol.t ./ 24 ./ 3600, Tr, label = "Transpiration") | ||
lines!(ax, sol.t ./ 24 ./ 3600, R, label = "R") | ||
|
||
axislegend(ax) | ||
ax = Axis(fig2[3, 1], xlabel = "Time (days)", ylabel = "Carbon Fluxes") | ||
lines!(ax, sol.t ./ 24 ./ 3600, GPP, label = "GPP") | ||
lines!(ax, sol.t ./ 24 ./ 3600, resp, label = "Respiration") | ||
axislegend(ax) | ||
save(joinpath(savedir, "no_veg_fluxes.png"), fig2) |
Oops, something went wrong.