Skip to content

Commit

Permalink
Add SoilCanopyModel diagnostics
Browse files Browse the repository at this point in the history
This PR finalizes the addition of SoilCanopyModel diagnostics.
It also adds a macro to generate land compute functions,
an optional argument for period averaging for default diagnostics,
an optional argument for ":long" (all) or ":short" (a few essentials)
for default diagnostics.
Diagnostics are now used in global_soil_canopy.jl.
EnergyHydrology model diagnostics_compute methods have been added.

Co-authored-by: AlexisRenchon <a.renchon@gmail.com>
Co-authored-by: SBozzolo <gbozzola@caltech.edu>
Co-authored-by: kmdeck <kdeck@caltech.edu>
Co-authored-by: braghiere <renato.braghiere@gmail.com>
  • Loading branch information
4 people committed Aug 16, 2024
1 parent 7c9bc04 commit d04f8ae
Show file tree
Hide file tree
Showing 14 changed files with 795 additions and 1,185 deletions.
250 changes: 120 additions & 130 deletions .buildkite/Manifest.toml

Large diffs are not rendered by default.

1 change: 1 addition & 0 deletions .buildkite/Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -42,4 +42,5 @@ cuDNN = "02a925ec-e4fe-4b08-9a7e-0d78e3d38ccd"

[compat]
ClimaTimeSteppers = "0.7"
ClimaAnalysis = "0.5.7"
Statistics = "1"
2 changes: 1 addition & 1 deletion .buildkite/pipeline.yml
Original file line number Diff line number Diff line change
Expand Up @@ -119,7 +119,7 @@ steps:

- label: "Global Run CPU"
command: "julia --color=yes --project=.buildkite experiments/integrated/global/global_soil_canopy.jl"
artifact_paths: "experiments/integrated/global/plots/*png"
artifact_paths: "experiments/global_soil_canopy/output_active/*png"
agents:
slurm_mem: 16G

Expand Down
9 changes: 8 additions & 1 deletion docs/src/diagnostics/make_diagnostic_table.jl
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,14 @@ for d in values(CL.Diagnostics.ALL_DIAGNOSTICS)
push!(comments, d.comments)
push!(standard_names, d.standard_name)
end
data = hcat(short_names, long_names, units, comments, standard_names)
i = sortperm(short_names) # indices of short_names sorted alphabetically
data = hcat(
short_names[i],
long_names[i],
units[i],
comments[i],
standard_names[i],
)
pretty_table(
data;
autowrap = true,
Expand Down
4 changes: 4 additions & 0 deletions docs/src/diagnostics/users_diagnostics.md
Original file line number Diff line number Diff line change
Expand Up @@ -58,6 +58,10 @@ sol = SciMLBase.solve(prob, ode_algo; dt = Δt, callback = diag_cb)

Your diagnostics have now been written in netcdf files in your output folder.

Note that by default, `default_diagnostics` assign two optional kwargs: `output_vars = :long` and `average_period` = :hourly.
`output_vars = :long` will write all available diagnostics, whereas `output_vars = :short` will only write essentials diagnostics.
`average_period` defines the period over which diagnostics are averaged, it can be set to `:hourly`, `:daily` and `:monthly`.

# Custom Diagnostics

When defining a custom diagnostic, follow these steps:
Expand Down
94 changes: 31 additions & 63 deletions experiments/integrated/global/global_soil_canopy.jl
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,11 @@ using Statistics
using Dates
import NCDatasets

using ClimaDiagnostics
using ClimaAnalysis
import ClimaAnalysis.Visualize as viz
using ClimaUtilities

regridder_type = :InterpolationsRegridder
extrapolation_bc =
(Interpolations.Periodic(), Interpolations.Flat(), Interpolations.Flat())
Expand Down Expand Up @@ -361,76 +366,39 @@ prob = SciMLBase.ODEProblem(
p,
)

saveat = [t0, tf]
sv = (;
t = Array{Float64}(undef, length(saveat)),
saveval = Array{NamedTuple}(undef, length(saveat)),
)
saving_cb = ClimaLand.NonInterpSavingCallback(sv, saveat)
# ClimaDiagnostics
base_output_dir = "global_soil_canopy/"
output_dir =
ClimaUtilities.OutputPathGenerator.generate_output_path(base_output_dir)

nc_writer = ClimaDiagnostics.Writers.NetCDFWriter(subsurface_space, output_dir)

diags = ClimaLand.CLD.default_diagnostics(land, t0; output_writer = nc_writer)

diagnostic_handler =
ClimaDiagnostics.DiagnosticsHandler(diags, Y, p, t0; dt = dt)

diag_cb = ClimaDiagnostics.DiagnosticsCallback(diagnostic_handler)

updateat = Array(t0:(3600 * 3):tf)
drivers = ClimaLand.get_drivers(land)
updatefunc = ClimaLand.make_update_drivers(drivers)
driver_cb = ClimaLand.DriverUpdateCallback(updateat, updatefunc)
cb = SciMLBase.CallbackSet(driver_cb, saving_cb)
@time sol = SciMLBase.solve(

sol = ClimaComms.@time ClimaComms.device() SciMLBase.solve(
prob,
ode_algo;
dt = dt,
callback = cb,
adaptive = false,
saveat = saveat,
callback = SciMLBase.CallbackSet(driver_cb, diag_cb),
)

if device_suffix == "cpu"
longpts = range(-180.0, 180.0, 101)
latpts = range(-90.0, 90.0, 101)
hcoords = [
ClimaCore.Geometry.LatLongPoint(lat, long) for long in longpts,
lat in reverse(latpts)
]
remapper = ClimaCore.Remapping.Remapper(surface_space, hcoords)
S = ClimaLand.Domains.top_center_to_surface(
(sol.u[end].soil.ϑ_l .- θ_r) ./.- θ_r),
)
S_ice = ClimaLand.Domains.top_center_to_surface(sol.u[end].soil.θ_i ./ ν)
T_soil = ClimaLand.Domains.top_center_to_surface(sv.saveval[end].soil.T)
SW = sv.saveval[end].drivers.SW_d

GPP = sv.saveval[end].canopy.photosynthesis.GPP .* 1e6
T_canopy = sol.u[end].canopy.energy.T
fields = [S, S_ice, T_soil, GPP, T_canopy, SW]
titles = [
"Effective saturation",
"Effective ice saturation",
"Temperature (K) - Soil",
"GPP",
"Temperature (K) - Canopy",
"Incident SW",
]
plotnames = ["S", "Sice", "temp", "gpp", "temp_canopy", "sw"]
mask_remap = ClimaCore.Remapping.interpolate(remapper, soil_params_mask_sfc)
for (id, x) in enumerate(fields)
title = titles[id]
plotname = plotnames[id]
x_remap = ClimaCore.Remapping.interpolate(remapper, x)

fig = Figure(size = (600, 400))
ax = Axis(
fig[1, 1],
xlabel = "Longitude",
ylabel = "Latitude",
title = title,
)
clims = extrema(x_remap)
CairoMakie.heatmap!(
ax,
longpts,
latpts,
oceans_to_value.(x_remap, mask_remap, 0.0),
colorrange = clims,
)
Colorbar(fig[:, end + 1], colorrange = clims)
outfile = joinpath(outdir, "$plotname.png")
CairoMakie.save(outfile, fig)
end
# ClimaAnalysis
simdir = ClimaAnalysis.SimDir(outdir)

for short_name in ClimaAnalysis.available_vars(simdir)
var = get(simdir; short_name)
fig = CairoMakie.Figure(size = (800, 600))
kwargs = ClimaAnalysis.has_altitude(var) ? Dict(:z => 1) : Dict()
viz.plot!(fig, var, lat = 0; kwargs...)
CairoMakie.save(joinpath(output_dir, "$short_name.png"), fig)
end
8 changes: 4 additions & 4 deletions experiments/long_runs/land.jl
Original file line number Diff line number Diff line change
Expand Up @@ -602,7 +602,7 @@ function setup_prob(t0, tf, Δt; outdir = outdir, nelements = (101, 15))
land,
t0;
output_writer = nc_writer,
output_vars = :short,
output_vars = :long,
)

diagnostic_handler =
Expand Down Expand Up @@ -646,13 +646,13 @@ setup_and_solve_problem(; greet = true);
# read in diagnostics and make some plots!
#### ClimaAnalysis ####
simdir = ClimaAnalysis.SimDir(outdir)
short_names_2D = ["gpp", "ct", "slw", "si"]
short_names = ["gpp", "swc", "si", "sie"]
times = 0.0:(60.0 * 60.0 * 12):(60.0 * 60.0 * 24 * 7)
for t in times
for short_name in short_names_2D
for short_name in short_names
var = get(simdir; short_name)
fig = CairoMakie.Figure(size = (800, 600))
kwargs = short_name in short_names_2D ? Dict() : Dict(:z => 1)
kwargs = ClimaAnalysis.has_altitude(var) ? Dict(:z => 1) : Dict()
viz.plot!(fig, var, time = t; kwargs...)
CairoMakie.save(joinpath(root_path, "$short_name $t.png"), fig)
end
Expand Down
6 changes: 3 additions & 3 deletions experiments/long_runs/soil.jl
Original file line number Diff line number Diff line change
Expand Up @@ -464,13 +464,13 @@ setup_and_solve_problem(; greet = true);
# read in diagnostics and make some plots!
#### ClimaAnalysis ####
simdir = ClimaAnalysis.SimDir(outdir)
short_names_2D = ["slw", "si", "tsoil"]
short_names = ["swc", "si", "sie"]
times = 0.0:(60.0 * 60.0 * 24 * 20):(60.0 * 60.0 * 24 * 60)
for t in times
for short_name in short_names_2D
for short_name in short_names
var = get(simdir; short_name)
fig = CairoMakie.Figure(size = (800, 600))
kwargs = short_name in short_names_2D ? Dict() : Dict(:z => 1)
kwargs = ClimaAnalysis.has_altitude(var) ? Dict(:z => 1) : Dict()
viz.plot!(fig, var, time = t; kwargs...)
CairoMakie.save(joinpath(root_path, "$short_name $t.png"), fig)
end
Expand Down
119 changes: 0 additions & 119 deletions src/diagnostics/bucket_compute_methods.jl

This file was deleted.

Loading

0 comments on commit d04f8ae

Please sign in to comment.