Skip to content

Commit

Permalink
add uhgf updates
Browse files Browse the repository at this point in the history
  • Loading branch information
LegrandNico committed Dec 16, 2024
1 parent 6c59b36 commit c03fbd9
Show file tree
Hide file tree
Showing 5 changed files with 282 additions and 4 deletions.
13 changes: 9 additions & 4 deletions pyhgf/model/network.py
Original file line number Diff line number Diff line change
Expand Up @@ -83,7 +83,7 @@ def input_idxs(self, value):
self.input_idxs = value

def create_belief_propagation_fn(
self, overwrite: bool = True, update_type: str = "eHGF"
self, overwrite: bool = True, update_type: str = "unbounded"
) -> "Network":
"""Create the belief propagation function.
Expand All @@ -97,11 +97,16 @@ def create_belief_propagation_fn(
preexisting values. Otherwise, do not create a new function if the attribute
`scan_fn` is already defined.
update_type :
The type of update to perform for volatility coupling. Can be `"eHGF"`
(defaults) or `"standard"`. The eHGF update step was proposed as an
The type of update to perform for volatility coupling. Can be `"unbounded"`
(defaults), `"ehgf"` or `"standard"`. The unbounded approximation was
recently introduced to avoid negative precisions updates, which greatly
improve sampling performance. The eHGF update step was proposed as an
alternative to the original definition in that it starts by updating the
mean and then the precision of the parent node, which generally reduces the
errors associated with impossible parameter space and improves sampling.
occurence of negative precision updates, while not removing them entirely.
.. note:
The different update steps only apply to nodes having at least one
volatility parents. In other cases, the regular HGF updates are applied.
"""
# create the update sequence if it does not already exist
Expand Down
11 changes: 11 additions & 0 deletions pyhgf/updates/posterior/continuous/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
from .continuous_node_posterior_update import continuous_node_posterior_update
from .continuous_node_posterior_update_ehgf import continuous_node_posterior_update_ehgf
from .continuous_node_posterior_update_unbounded import (
continuous_node_posterior_update_unbounded,
)

__all__ = [
"continuous_node_posterior_update_ehgf",
"continuous_node_posterior_update_unbounded",
"continuous_node_posterior_update",
]
Original file line number Diff line number Diff line change
@@ -0,0 +1,66 @@
# Author: Nicolas Legrand <nicolas.legrand@cas.au.dk>

from functools import partial
from typing import Dict

from jax import jit

from pyhgf.typing import Edges

from .posterior_update_mean_continuous_node_unbounded import (
posterior_update_mean_continuous_node_unbounded,
)
from .posterior_update_precision_continuous_node_unbounded import (
posterior_update_precision_continuous_node_unbounded,
)


@partial(jit, static_argnames=("edges", "node_idx"))
def continuous_node_posterior_update_unbounded(
attributes: Dict, node_idx: int, edges: Edges, **args
) -> Dict:
"""Update the posterior of a continuous node using an unbounded approximation.
Parameters
----------
attributes :
The attributes of the probabilistic nodes.
node_idx :
Pointer to the node that needs to be updated. After continuous updates, the
parameters of value and volatility parents (if any) will be different.
edges :
The edges of the probabilistic nodes as a tuple of
:py:class:`pyhgf.typing.Indexes`. The tuple has the same length as node number.
For each node, the index list value and volatility parents and children.
Returns
-------
attributes :
The updated attributes of the probabilistic nodes.
See Also
--------
continuous_node_posterior_update_ehgf
"""
# update the posterior mean and precision using the eHGF update step
# we start with the mean update using the expected precision as an approximation
posterior_precision, precision_l1, precision_l2 = (
posterior_update_precision_continuous_node_unbounded(
attributes,
edges,
node_idx,
)
)
attributes[node_idx]["precision"] = posterior_precision

posterior_mean = posterior_update_mean_continuous_node_unbounded(
attributes=attributes,
edges=edges,
node_idx=node_idx,
precision_l1=precision_l1,
precision_l2=precision_l2,
)
attributes[node_idx]["mean"] = posterior_mean

return attributes
Original file line number Diff line number Diff line change
@@ -0,0 +1,112 @@
# Author: Nicolas Legrand <nicolas.legrand@cas.au.dk>

from functools import partial
from typing import Dict

import jax.numpy as jnp
from jax import jit

from pyhgf.typing import Edges


@partial(jit, static_argnames=("edges", "node_idx"))
def posterior_update_mean_continuous_node_unbounded(
attributes: Dict,
edges: Edges,
node_idx: int,
precision_l1: float,
precision_l2: float,
) -> float:
"""Posterior update of mean using ubounded update."""
volatility_child_idx = edges[node_idx].volatility_children[0]
volatility_coupling = attributes[node_idx]["volatility_coupling_children"][0]
gamma = attributes[node_idx]["expected_mean"]
phi = jnp.log(
(1 / attributes[volatility_child_idx]["precision"]) * (2 + jnp.sqrt(3))
)

# first approximation ------------------------------------------------------
delta_l1 = (
(
(1 / attributes[volatility_child_idx]["precision"])
+ (
attributes[volatility_child_idx]["mean"]
- attributes[volatility_child_idx]["expected_mean"] ** 2
)
)
/ (
(1 / attributes[volatility_child_idx]["expected_precision"])
+ jnp.exp(
volatility_coupling * phi
+ attributes[volatility_child_idx]["tonic_volatility"]
)
)
) - 1
mean_l1 = (
attributes[node_idx]["expected_mean"]
+ (
(volatility_coupling * attributes[node_idx]["tonic_volatility"])
/ (2 * precision_l1)
)
* delta_l1
)

# second approximation -----------------------------------------------------
omega_phi = jnp.exp(
volatility_coupling * phi + attributes[node_idx]["tonic_volatility"]
) / (
(1 / attributes[volatility_child_idx]["precision"])
+ jnp.exp(volatility_coupling * phi + attributes[node_idx]["tonic_volatility"])
)
delta_phi = (
(1 / attributes[volatility_child_idx]["precision"])
+ (
attributes[volatility_child_idx]["mean"]
- attributes[volatility_child_idx]["expected_mean"]
)
** 2
) / (
(1 / attributes[volatility_child_idx]["expected_precision"])
+ jnp.exp(
volatility_coupling * phi
+ attributes[volatility_child_idx]["tonic_volatility"]
)
) - 1

mu_phi = ((2 * precision_l2 - 1) * phi + attributes[node_idx]["expected_mean"]) / (
2 * precision_l2
)

mean_l2 = (
mu_phi + (volatility_coupling * omega_phi) / (2 * precision_l2) * delta_phi
)

# weigthed interpolation
theta_l = jnp.sqrt(
1.2
* (
(1 / attributes[volatility_child_idx]["precision"])
+ (
attributes[volatility_child_idx]["mean"]
- attributes[volatility_child_idx]["expected_mean"]
)
** 2
)
/ ((1 / attributes[volatility_child_idx]["expected_precision"]) * precision_l1)
)
phi_l = 8.0
theta_r = 0.0
phi_r = 1.0
mean = (1 - b(gamma, theta_l, phi_l, theta_r, phi_r)) * mean_l1 + b(
gamma, theta_l, phi_l, theta_r, phi_r
) * mean_l2

return mean


def s(x, theta, phi):
return 1 / (1 + jnp.exp(-phi * (x - theta)))


def b(x, theta_l, phi_l, theta_r, phi_r):
return s(x, theta_l, phi_l) - (1 - s(x, theta_r, phi_r))
Original file line number Diff line number Diff line change
@@ -0,0 +1,84 @@
# Author: Nicolas Legrand <nicolas.legrand@cas.au.dk>

from functools import partial
from typing import Dict

import jax.numpy as jnp
from jax import jit

from pyhgf.typing import Edges


@partial(jit, static_argnames=("edges", "node_idx"))
def posterior_update_precision_continuous_node_unbounded(
attributes: Dict, edges: Edges, node_idx: int
) -> float:
"""Posterior update of precision using ubounded update."""
volatility_child_idx = edges[node_idx].volatility_children[0]
volatility_coupling = attributes[node_idx]["volatility_coupling_children"][0]
gamma = attributes[node_idx]["expected_mean"]

# first approximation ------------------------------------------------------
precision_l1 = attributes[node_idx][
"expected_precision"
] + 0.5 * volatility_coupling**2 * attributes[node_idx]["tonic_volatility"] * (
1 - attributes[node_idx]["tonic_volatility"]
)

# second approximation -----------------------------------------------------
phi = jnp.log(
(1 / attributes[volatility_child_idx]["expected_precision"]) * (2 + jnp.sqrt(3))
)
omega_phi = jnp.exp(
volatility_coupling * phi + attributes[node_idx]["tonic_volatility"]
) / (
(1 / attributes[volatility_child_idx]["expected_precision"])
+ jnp.exp(volatility_coupling * phi + attributes[node_idx]["tonic_volatility"])
)
delta_phi = (
(1 / attributes[volatility_child_idx]["precision"])
+ (
attributes[volatility_child_idx]["mean"]
- attributes[volatility_child_idx]["expected_mean"]
)
** 2
) / (
(1 / attributes[volatility_child_idx]["expected_precision"])
+ jnp.exp(volatility_coupling * phi + attributes[node_idx]["tonic_volatility"])
) - 1

precision_l2 = attributes[node_idx][
"expected_precision"
] + 0.5 * volatility_coupling**2 * omega_phi * (
omega_phi + (2 * omega_phi - 1) * delta_phi
)

# weigthed interpolation
theta_l = jnp.sqrt(
1.2
* (
(1 / attributes[volatility_child_idx]["precision"])
+ (
attributes[volatility_child_idx]["mean"]
- attributes[volatility_child_idx]["expected_mean"]
)
** 2
)
/ ((1 / attributes[volatility_child_idx]["expected_precision"]) * precision_l1)
)
phi_l = 8.0
theta_r = 0.0
phi_r = 1.0
precision = (1 - b(gamma, theta_l, phi_l, theta_r, phi_r)) * precision_l1 + b(
gamma, theta_l, phi_l, theta_r, phi_r
) * precision_l2

return precision, precision_l1, precision_l2


def s(x, theta, phi):
return 1 / (1 + jnp.exp(-phi * (x - theta)))


def b(x, theta_l, phi_l, theta_r, phi_r):
return s(x, theta_l, phi_l) - (1 - s(x, theta_r, phi_r))

0 comments on commit c03fbd9

Please sign in to comment.