-
Notifications
You must be signed in to change notification settings - Fork 19
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
6c59b36
commit c03fbd9
Showing
5 changed files
with
282 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,11 @@ | ||
from .continuous_node_posterior_update import continuous_node_posterior_update | ||
from .continuous_node_posterior_update_ehgf import continuous_node_posterior_update_ehgf | ||
from .continuous_node_posterior_update_unbounded import ( | ||
continuous_node_posterior_update_unbounded, | ||
) | ||
|
||
__all__ = [ | ||
"continuous_node_posterior_update_ehgf", | ||
"continuous_node_posterior_update_unbounded", | ||
"continuous_node_posterior_update", | ||
] |
66 changes: 66 additions & 0 deletions
66
pyhgf/updates/posterior/continuous/continuous_node_posterior_update_unbounded.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,66 @@ | ||
# Author: Nicolas Legrand <nicolas.legrand@cas.au.dk> | ||
|
||
from functools import partial | ||
from typing import Dict | ||
|
||
from jax import jit | ||
|
||
from pyhgf.typing import Edges | ||
|
||
from .posterior_update_mean_continuous_node_unbounded import ( | ||
posterior_update_mean_continuous_node_unbounded, | ||
) | ||
from .posterior_update_precision_continuous_node_unbounded import ( | ||
posterior_update_precision_continuous_node_unbounded, | ||
) | ||
|
||
|
||
@partial(jit, static_argnames=("edges", "node_idx")) | ||
def continuous_node_posterior_update_unbounded( | ||
attributes: Dict, node_idx: int, edges: Edges, **args | ||
) -> Dict: | ||
"""Update the posterior of a continuous node using an unbounded approximation. | ||
Parameters | ||
---------- | ||
attributes : | ||
The attributes of the probabilistic nodes. | ||
node_idx : | ||
Pointer to the node that needs to be updated. After continuous updates, the | ||
parameters of value and volatility parents (if any) will be different. | ||
edges : | ||
The edges of the probabilistic nodes as a tuple of | ||
:py:class:`pyhgf.typing.Indexes`. The tuple has the same length as node number. | ||
For each node, the index list value and volatility parents and children. | ||
Returns | ||
------- | ||
attributes : | ||
The updated attributes of the probabilistic nodes. | ||
See Also | ||
-------- | ||
continuous_node_posterior_update_ehgf | ||
""" | ||
# update the posterior mean and precision using the eHGF update step | ||
# we start with the mean update using the expected precision as an approximation | ||
posterior_precision, precision_l1, precision_l2 = ( | ||
posterior_update_precision_continuous_node_unbounded( | ||
attributes, | ||
edges, | ||
node_idx, | ||
) | ||
) | ||
attributes[node_idx]["precision"] = posterior_precision | ||
|
||
posterior_mean = posterior_update_mean_continuous_node_unbounded( | ||
attributes=attributes, | ||
edges=edges, | ||
node_idx=node_idx, | ||
precision_l1=precision_l1, | ||
precision_l2=precision_l2, | ||
) | ||
attributes[node_idx]["mean"] = posterior_mean | ||
|
||
return attributes |
112 changes: 112 additions & 0 deletions
112
pyhgf/updates/posterior/continuous/posterior_update_mean_continuous_node_unbounded.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,112 @@ | ||
# Author: Nicolas Legrand <nicolas.legrand@cas.au.dk> | ||
|
||
from functools import partial | ||
from typing import Dict | ||
|
||
import jax.numpy as jnp | ||
from jax import jit | ||
|
||
from pyhgf.typing import Edges | ||
|
||
|
||
@partial(jit, static_argnames=("edges", "node_idx")) | ||
def posterior_update_mean_continuous_node_unbounded( | ||
attributes: Dict, | ||
edges: Edges, | ||
node_idx: int, | ||
precision_l1: float, | ||
precision_l2: float, | ||
) -> float: | ||
"""Posterior update of mean using ubounded update.""" | ||
volatility_child_idx = edges[node_idx].volatility_children[0] | ||
volatility_coupling = attributes[node_idx]["volatility_coupling_children"][0] | ||
gamma = attributes[node_idx]["expected_mean"] | ||
phi = jnp.log( | ||
(1 / attributes[volatility_child_idx]["precision"]) * (2 + jnp.sqrt(3)) | ||
) | ||
|
||
# first approximation ------------------------------------------------------ | ||
delta_l1 = ( | ||
( | ||
(1 / attributes[volatility_child_idx]["precision"]) | ||
+ ( | ||
attributes[volatility_child_idx]["mean"] | ||
- attributes[volatility_child_idx]["expected_mean"] ** 2 | ||
) | ||
) | ||
/ ( | ||
(1 / attributes[volatility_child_idx]["expected_precision"]) | ||
+ jnp.exp( | ||
volatility_coupling * phi | ||
+ attributes[volatility_child_idx]["tonic_volatility"] | ||
) | ||
) | ||
) - 1 | ||
mean_l1 = ( | ||
attributes[node_idx]["expected_mean"] | ||
+ ( | ||
(volatility_coupling * attributes[node_idx]["tonic_volatility"]) | ||
/ (2 * precision_l1) | ||
) | ||
* delta_l1 | ||
) | ||
|
||
# second approximation ----------------------------------------------------- | ||
omega_phi = jnp.exp( | ||
volatility_coupling * phi + attributes[node_idx]["tonic_volatility"] | ||
) / ( | ||
(1 / attributes[volatility_child_idx]["precision"]) | ||
+ jnp.exp(volatility_coupling * phi + attributes[node_idx]["tonic_volatility"]) | ||
) | ||
delta_phi = ( | ||
(1 / attributes[volatility_child_idx]["precision"]) | ||
+ ( | ||
attributes[volatility_child_idx]["mean"] | ||
- attributes[volatility_child_idx]["expected_mean"] | ||
) | ||
** 2 | ||
) / ( | ||
(1 / attributes[volatility_child_idx]["expected_precision"]) | ||
+ jnp.exp( | ||
volatility_coupling * phi | ||
+ attributes[volatility_child_idx]["tonic_volatility"] | ||
) | ||
) - 1 | ||
|
||
mu_phi = ((2 * precision_l2 - 1) * phi + attributes[node_idx]["expected_mean"]) / ( | ||
2 * precision_l2 | ||
) | ||
|
||
mean_l2 = ( | ||
mu_phi + (volatility_coupling * omega_phi) / (2 * precision_l2) * delta_phi | ||
) | ||
|
||
# weigthed interpolation | ||
theta_l = jnp.sqrt( | ||
1.2 | ||
* ( | ||
(1 / attributes[volatility_child_idx]["precision"]) | ||
+ ( | ||
attributes[volatility_child_idx]["mean"] | ||
- attributes[volatility_child_idx]["expected_mean"] | ||
) | ||
** 2 | ||
) | ||
/ ((1 / attributes[volatility_child_idx]["expected_precision"]) * precision_l1) | ||
) | ||
phi_l = 8.0 | ||
theta_r = 0.0 | ||
phi_r = 1.0 | ||
mean = (1 - b(gamma, theta_l, phi_l, theta_r, phi_r)) * mean_l1 + b( | ||
gamma, theta_l, phi_l, theta_r, phi_r | ||
) * mean_l2 | ||
|
||
return mean | ||
|
||
|
||
def s(x, theta, phi): | ||
return 1 / (1 + jnp.exp(-phi * (x - theta))) | ||
|
||
|
||
def b(x, theta_l, phi_l, theta_r, phi_r): | ||
return s(x, theta_l, phi_l) - (1 - s(x, theta_r, phi_r)) |
84 changes: 84 additions & 0 deletions
84
pyhgf/updates/posterior/continuous/posterior_update_precision_continuous_node_unbounded.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,84 @@ | ||
# Author: Nicolas Legrand <nicolas.legrand@cas.au.dk> | ||
|
||
from functools import partial | ||
from typing import Dict | ||
|
||
import jax.numpy as jnp | ||
from jax import jit | ||
|
||
from pyhgf.typing import Edges | ||
|
||
|
||
@partial(jit, static_argnames=("edges", "node_idx")) | ||
def posterior_update_precision_continuous_node_unbounded( | ||
attributes: Dict, edges: Edges, node_idx: int | ||
) -> float: | ||
"""Posterior update of precision using ubounded update.""" | ||
volatility_child_idx = edges[node_idx].volatility_children[0] | ||
volatility_coupling = attributes[node_idx]["volatility_coupling_children"][0] | ||
gamma = attributes[node_idx]["expected_mean"] | ||
|
||
# first approximation ------------------------------------------------------ | ||
precision_l1 = attributes[node_idx][ | ||
"expected_precision" | ||
] + 0.5 * volatility_coupling**2 * attributes[node_idx]["tonic_volatility"] * ( | ||
1 - attributes[node_idx]["tonic_volatility"] | ||
) | ||
|
||
# second approximation ----------------------------------------------------- | ||
phi = jnp.log( | ||
(1 / attributes[volatility_child_idx]["expected_precision"]) * (2 + jnp.sqrt(3)) | ||
) | ||
omega_phi = jnp.exp( | ||
volatility_coupling * phi + attributes[node_idx]["tonic_volatility"] | ||
) / ( | ||
(1 / attributes[volatility_child_idx]["expected_precision"]) | ||
+ jnp.exp(volatility_coupling * phi + attributes[node_idx]["tonic_volatility"]) | ||
) | ||
delta_phi = ( | ||
(1 / attributes[volatility_child_idx]["precision"]) | ||
+ ( | ||
attributes[volatility_child_idx]["mean"] | ||
- attributes[volatility_child_idx]["expected_mean"] | ||
) | ||
** 2 | ||
) / ( | ||
(1 / attributes[volatility_child_idx]["expected_precision"]) | ||
+ jnp.exp(volatility_coupling * phi + attributes[node_idx]["tonic_volatility"]) | ||
) - 1 | ||
|
||
precision_l2 = attributes[node_idx][ | ||
"expected_precision" | ||
] + 0.5 * volatility_coupling**2 * omega_phi * ( | ||
omega_phi + (2 * omega_phi - 1) * delta_phi | ||
) | ||
|
||
# weigthed interpolation | ||
theta_l = jnp.sqrt( | ||
1.2 | ||
* ( | ||
(1 / attributes[volatility_child_idx]["precision"]) | ||
+ ( | ||
attributes[volatility_child_idx]["mean"] | ||
- attributes[volatility_child_idx]["expected_mean"] | ||
) | ||
** 2 | ||
) | ||
/ ((1 / attributes[volatility_child_idx]["expected_precision"]) * precision_l1) | ||
) | ||
phi_l = 8.0 | ||
theta_r = 0.0 | ||
phi_r = 1.0 | ||
precision = (1 - b(gamma, theta_l, phi_l, theta_r, phi_r)) * precision_l1 + b( | ||
gamma, theta_l, phi_l, theta_r, phi_r | ||
) * precision_l2 | ||
|
||
return precision, precision_l1, precision_l2 | ||
|
||
|
||
def s(x, theta, phi): | ||
return 1 / (1 + jnp.exp(-phi * (x - theta))) | ||
|
||
|
||
def b(x, theta_l, phi_l, theta_r, phi_r): | ||
return s(x, theta_l, phi_l) - (1 - s(x, theta_r, phi_r)) |