Authors: Nate Kimball, Gregor von Laszewski, Wes Brewer
- finish sbatch scripts
- automate sbatch scripts
- figure out why wsl isn't working
TODO: Nate
- create isolated new wsl environment
- use what we do in the ubuntu thing, but do separate documentation er as the ubuntu native install may have other steps or issuse
wsl> python3 -m venv /home/$USER/OSMI
wsl> source /home/$USER/OSMI/bin/activate
wsl> python -V
wsl> pip install pip -U
To get the code we clone a gitlab instance that is hosted at Oakridge National Laboratory , please execute:
export PROJECT=/home/$USER/project/osmi
mkdir -p $PROJECT
cd $PROJECT
git clone https://github.com/DSC-SPIDAL/mlcommons-osmi.git
git clone https://code.ornl.gov/whb/osmi-bench.git
cd osmi-bench
pip install -r $PROJECT/mlcommons-osmi/wsl/requirements.txt
wsl> cd $PROJECT/mlcommons-osmi/wsl
wsl>
wsl> make image
wsl> cd models
wsl> time python train.py small_lstm (14.01s user 1.71s system 135% cpu 11.605 total)
wsl> python train.py medium_cnn (109.20s user 6.84s system 407% cpu 28.481 total)
wsl> python train.py large_tcnn
cd ..
TODO: Gregor
python -m venv ~/OSMI
source ~/OSMI/bin/activate
pip install pip -U
To get the code we clone a gitlab instance that is hosted at Oakridge National Laboratory , please execute:
mkdir ~/osmi
cd ~/osmi
git clone git@github.com:DSC-SPIDAL/mlcommons-osmi.git
# git clone https://github.com/DSC-SPIDAL/mlcommons-osmi.git
git clone https://code.ornl.gov/whb/osmi-bench.git
cd osmi-bench
pip install -r ../../mlcommons-osmi/requirements-ubuntu.txt
Note: the original version of grpcio 1.0.0 does not distribute valid wheels, hence we assume the library is out of date, but a new version with 1.15.1 is available that is distributed. Gregor strongly recoomnds to swithc to a supported version of grpcio.
cd models
time python train.py small_lstm # taks about 10s on an 5950X
time python train.py medium_cnn # taks less the 12s on an 5950X
time python train.py large_tcnn # takes less the 30s on an 5950X
Unclear. the documentation do this with singularity, I do have singularity on desktop, but can we use it natively and compare with singularity performance?
Nate will explore theoretically how to isntall tensorflow servving on ubuntu
compare if others have install instructions, these are old from 16.01 but we want 21. ...
sudo pip install tensorflow-serving-api
echo "deb [arch=amd64] http://storage.googleapis.com/tensorflow-serving-apt stable tensorflow-model-server tensorflow-model-server-universal" | sudo tee /etc/apt/sources.list.d/tensorflow-serving.list
curl https://storage.googleapis.com/tensorflow-serving-apt/tensorflow-serving.release.pub.gpg | sudo apt-key add -
sudo apt-get update && sudo apt-get install tensorflow-model-server
which tensorflow_model_server
make image
Running the program
make run
make shell
python tfs_grpc_client.py -m small_lstm -b 32 -n 48 localhost:8500
TODO: complete
To run the OSMI benchmark, you will first need to generate the project directory with the code. We assume you are in the group bii_dsc_community
. THis allows you access to the directory
/project/bii_dsc_community
As well as the slurm partitions gpu
and bii_gpu
To get the code we clone a gitlab instance that is hosted at Oakridge National Laboratory (https://code.ornl.gov/whb/osmi-bench). Firts you need to create a directory under your username in the project directory. We recommend to use your username. Follow these setps:
mkdir -p /project/bii_dsc_community/$USER/osmi
cd /project/bii_dsc_community/$USER/osmi
git clone git@github.com:DSC-SPIDAL/mlcommons-osmi.git
git clone https://code.ornl.gov/whb/osmi-bench.git
cd osmi-bench
Next we recommend that you set up python. Although Conda is not our favorite development environment, we use conda here out of convenience. In future we will also document here how to set OSMI up with an environment from python.org useing vanillla python installs.
rivanna> wget https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-Linux-x86_64.sh
rivanna> bash Miniforge3-Linux-x86_64.sh
rivanna> source ~/.bashrc
rivanna> conda create -n osmi python=3.8
rivanna> conda activate osmi
gregors version of this
rivanna> module load anaconda
rivanna> conda -V # 4.9.2
rivanna> anaconda -V # 1.7.2
rivanna> conda create -n OSMI python=3.8
rivanna> conda activate OSMI
DO NOT USE CONDA INIT!!!!!
Rivanna has two brimary modes so users can interact with it.
-
Interactive Jobs: The first one are interactive jobs that allow you to reserve a node on rivanna so it looks like a login node. This interactive mode is usefull only during the debug phase and can serve as a convenient way to quickly create batch scripts that are run in the second mode.
-
Batch Jobs: The second mode is a batch job that is controlled by a batch script. We will showcase here how to set such scripts up and use them
Once you know hwo to create jobs with a propper batch script you will likely no longer need to use interactive jobs. We keep this documentation for beginners that like to experiement in interactive mode to develop batch scripts.
We noticed that when running interactive jobs on compute node it makes writing to the files system a lot faster. TODO: This is inprecise as its not discussed which file system ... Also you can just use git to sync
First, obtain an interactive job with
rivanna> ijob -c 1 -A bii_dsc_community -p standard --time=1-00:00:00
*note: use --partition=bii-gpu --gres=gpu:v100:n to recieve n v100 GPUs
Next
node> cd /project/bii_dsc_community/$USER/osmi/osmi-bench/
Now edit requirements.txt to remove the version number from grpcio
node> pip install –-user -r requirements.txt
node> cd models
node> python train.py small_lstm
node> python train.py medium_cnn
node> python train.py large_tcnn
cd ..
singularity pull docker://bitnami/tensorflow-serving [for cpu]
singularity pull docker://tensorflow/serving:latest-gpu
Edit /project/bii_dsc_community/$USER/osmi/osmi-bench/benchmark/models.conf to make each base_path correspond to the proper directory e.g. "/project/bii_dsc_community/$USER/osmi/osmi-bench/models/small_lstm",
For this application there is no separate data
rivanna> ijob -c 1 -A bii_dsc_community -p standard --time=1-00:00:00 --partition=bii-gpu --gres=gpu
node> singularity shell --nv --home `pwd` serving_latest-gpu.sif
singularity> nvidia-smi #to see if you can use gpus (on node)
singularity> cd benchmark
singularity> tensorflow_model_server --port=8500 --rest_api_port=0 --model_config_file=models.conf >& log &
singularity> cat log //to check its working
singularity> lsof -i :8500 // to make sure it an accept incoming directions
Edit /project/bii_dsc_community/$USER/osmi/osmi-bench/benchmark/tfs_grpc_client.py to make sure all the models use float32 To run the client:
python tfs_grpc_client.py -m [model, e.g. small_lstm] -b [batch size, e.g. 32] -n [# of batches, e.g. 10] localhost:8500
simpler way
rivanna> ijob -c 1 -A bii_dsc_community -p standard --time=1-00:00:00 --partition=bii-gpu --gres=gpu
conda activate osmi
node> cd /project/bii_dsc_community/$USER/osmi/osmi-bench/benchmark
node> singularity run --nv --home `pwd` ../serving_latest-gpu.sif tensorflow_model_server --port=8500 --rest_api_port=0 --model_config_file=models.conf >& log &
node> python tfs_grpc_client.py -m large_tcnn -b 128 -n 100 localhost:8500
run with slurm script
rivanna> cd /project/bii_dsc_community/$USER/osmi/osmi-bench/benchmark
rivanna> sbatch test_script.slurm
Multiple GPU parallelization - incomplete
node> singularity exec --bind `pwd`:/home --pwd /home ../haproxy_latest.sif haproxy -d -f haproxy-grpc.cfg >& haproxy.log &
node> cat haproxy.log
node> CUDA_VISIBLE_DEVICES=0 singularity run --home `pwd` --nv ../serving_latest-gpu.sif tensorflow_model_server --port=8500 --model_config_file=models.conf >& tfs0.log &
node> cat tfs0.log
node> CUDA_VISIBLE_DEVICES=1 singularity run --home `pwd` --nv ../serving_latest-gpu.sif tensorflow_model_server --port=8501 --model_config_file=models.conf >& tfs1.log &
node> cat tf
do this for all gpus with different ports
-
Production Deployment of Machine-Learned Rotorcraft Surrogate Models on HPC, Wesley Brewer, Daniel Martinez, Mathew Boyer, Dylan Jude, Andy Wissink, Ben Parsons, Junqi Yin, Valentine Anantharaj 2021 IEEE/ACM Workshop on Machine Learning in High Performance Computing Environments (MLHPC), 978-1-6654-1124-0/21/$31.00 ©2021 IEEE | DOI: 10.1109/MLHPC54614.2021.00008, https://ieeexplore.ieee.org/document/9652868 TODO: please ask wess what the free pdf link is all gov organizations have one. for example as ornl is coauther it must be on their site somewhere.
-
Using Rivanna for GPU ussage, Gregor von Laszewski, JP. Fleischer https://github.com/cybertraining-dsc/reu2022/blob/main/project/hpc/rivanna-introduction.md
-
Setting up a Windows computer for research, Gregor von Laszewski, J.P Fleischer https://github.com/cybertraining-dsc/reu2022/blob/main/project/windows-configuration.md
-
Initial notes to be deleted, Nate: https://docs.google.com/document/d/1luDAAatx6ZD_9-gM5HZZLcvglLuk_OqswzAS2n_5rNA
-
Proceedings of the CyberTraining REU2022, Gregor von Laszewski, Geoffrey Fox https://cloudmesh-community.github.io/pub/vonLaszewski-reu2022.pdf
-
W. Brewer et al., "Production Deployment of Machine-Learned Rotorcraft Surrogate Models on HPC," 2021 IEEE/ACM Workshop on Machine Learning in High Performance Computing Environments (MLHPC), St. Louis, MO, USA, 2021, pp. 21-32, doi: 10.1109/MLHPC54614.2021.00008. https://ieeexplore.ieee.org/document/9652868 #add preprint