Skip to content

DigitalBiomarkerDiscoveryPipeline/Case_Studies

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

31 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Case Studies

Case studies are a great way to gain experience working with wearables and mHealth data and implementing computational tools from the DBDP. These case studies are part of dbdpED, the educational resource available through the Digital Biomarker Discovery Pipeline.

Levels

We have 3 levels of case studies:

  • Beginner. You have limited knowledge of Python/R. This tutorial is a step-by-step guide.
  • Intermediate. You should know Python/R well and have some experience working with datasets. This tutorial is a step-by-step guide. However, we will give ideas on how you could expand upon the methods in your own work.
  • Advanced. You should know Python/R very well and have experience working with datasets in one of the languages. This tutorial is not a step-by-step guide. Rather, it provides the structure and resources for you to explore the data, build your own prediction models, and draw your own conclusions.

System Requirements

  • Python(3.0.0+) or R
  • Either sufficient space on your personal computing machine to download the data OR ability to work on a cluster. If you have Google Drive, we recommend Google Colab (it's free!).

Available Case Studies

Case Study Level Language(s)
Stress Advanced Python, R
CGM Glucose Beginner Python
Sleep Beginner Python
ECG Beginner Python
more coming soon

Questions

Please refer to individual case studies for questions/issue tracking. If you have an idea or request for a new case study, please open an issue in this repo.

About

DBDP Case Studies

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published