Skip to content

DigitalBiomarkerDiscoveryPipeline/wearablevar

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

wearablevar

License: MIT

wearablevar is a Python package that calculates wearable variability metrics from longitudinal wearable sensors. These features can be used as part of your feature engineering process.

wearblevar is part of the Digital Biomarker Discovery Pipeline, available at dbdp.org.

Installation

wearablevar requires the pandas, numpy, and datetime packages.

Recommended: Install via pip:

$ pip install wearablevar

Install via git:

$ pip install git+git://github.com/brinnaebent/wearablevar.git
$ git clone

Functions

Plugin README
summarymetrics interday mean, median, minimum, maximum, Q1, Q3
interdaycv interday coefficient of variation
interdaysd interday standard deviation
intradaycv intraday coefficient of variation (mean, median, standard deviation)
intradaysd intraday standard deviation (mean, median, standard deviation)
intradaymean intraday mean (mean, median, standard deviation)
TIR Time in Range (SD default=1), *Note time relative to SR
TOR Time outside Range (SD default=1), *Note time relative to SR
POR Percent Outside Range (%) (SD default=1)
MASE Mean Amplitude of Sensor Excursions (SD default=1)
importe4 Import sensor data in 2 columns: datetime type, sensor type
importe4acc Import tri-axial accelerometry data in 4 columns: datetime type, sensor type x,y,z

Continued Development

We are frequently updating this package with new functions and insights from the DBDP (Digital Biomarker Discovery Pipeline). For more details on contributing your own functions to this package, see dbdp.org.

License

MIT