Skip to content

Commit

Permalink
Graphviz (#52)
Browse files Browse the repository at this point in the history
* Add graphviz representation of the tree

* Complete graphviz test
Add comments to some tests

* Add optional title to tree graph

* Add fontcolor keyword to nodes of the tree

* Add color keyword to arrows of graph

* Update version file to 1.2.4
  • Loading branch information
rmontanana authored Apr 17, 2022
1 parent 82838fa commit 93be8a8
Show file tree
Hide file tree
Showing 4 changed files with 99 additions and 1 deletion.
22 changes: 22 additions & 0 deletions stree/Splitter.py
Original file line number Diff line number Diff line change
Expand Up @@ -145,6 +145,28 @@ def make_predictor(self):
except IndexError:
self._class = None

def graph(self):
"""
Return a string representing the node in graphviz format
"""
output = ""
count_values = np.unique(self._y, return_counts=True)
if self.is_leaf():
output += (
f'N{id(self)} [shape=box style=filled label="'
f"class={self._class} impurity={self._impurity:.3f} "
f'classes={count_values[0]} samples={count_values[1]}"];\n'
)
else:
output += (
f'N{id(self)} [label="#features={len(self._features)} '
f"classes={count_values[0]} samples={count_values[1]} "
f'({sum(count_values[1])})" fontcolor=black];\n'
)
output += f"N{id(self)} -> N{id(self.get_up())} [color=black];\n"
output += f"N{id(self)} -> N{id(self.get_down())} [color=black];\n"
return output

def __str__(self) -> str:
count_values = np.unique(self._y, return_counts=True)
if self.is_leaf():
Expand Down
17 changes: 17 additions & 0 deletions stree/Strees.py
Original file line number Diff line number Diff line change
Expand Up @@ -476,6 +476,23 @@ def __iter__(self) -> Siterator:
tree = None
return Siterator(tree)

def graph(self, title="") -> str:
"""Graphviz code representing the tree
Returns
-------
str
graphviz code
"""
output = (
"digraph STree {\nlabel=<STree "
f"{title}>\nfontsize=30\nfontcolor=blue\nlabelloc=t\n"
)
for node in self:
output += node.graph()
output += "}\n"
return output

def __str__(self) -> str:
"""String representation of the tree
Expand Down
2 changes: 1 addition & 1 deletion stree/_version.py
Original file line number Diff line number Diff line change
@@ -1 +1 @@
__version__ = "1.2.3"
__version__ = "1.2.4"
59 changes: 59 additions & 0 deletions stree/tests/Stree_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -358,6 +358,7 @@ def test_predict_feature_dimensions(self):

# Tests of score
def test_score_binary(self):
"""Check score for binary classification."""
X, y = load_dataset(self._random_state)
accuracies = [
0.9506666666666667,
Expand All @@ -380,6 +381,7 @@ def test_score_binary(self):
self.assertAlmostEqual(accuracy_expected, accuracy_score)

def test_score_max_features(self):
"""Check score using max_features."""
X, y = load_dataset(self._random_state)
clf = Stree(
kernel="liblinear",
Expand All @@ -391,6 +393,7 @@ def test_score_max_features(self):
self.assertAlmostEqual(0.9453333333333334, clf.score(X, y))

def test_bogus_splitter_parameter(self):
"""Check that bogus splitter parameter raises exception."""
clf = Stree(splitter="duck")
with self.assertRaises(ValueError):
clf.fit(*load_dataset())
Expand Down Expand Up @@ -446,6 +449,7 @@ def test_multiclass_classifier_integrity(self):
self.assertListEqual([47], resdn[1].tolist())

def test_score_multiclass_rbf(self):
"""Test score for multiclass classification with rbf kernel."""
X, y = load_dataset(
random_state=self._random_state,
n_classes=3,
Expand All @@ -463,6 +467,7 @@ def test_score_multiclass_rbf(self):
self.assertEqual(1.0, clf2.fit(X, y).score(X, y))

def test_score_multiclass_poly(self):
"""Test score for multiclass classification with poly kernel."""
X, y = load_dataset(
random_state=self._random_state,
n_classes=3,
Expand All @@ -484,6 +489,7 @@ def test_score_multiclass_poly(self):
self.assertEqual(1.0, clf2.fit(X, y).score(X, y))

def test_score_multiclass_liblinear(self):
"""Test score for multiclass classification with liblinear kernel."""
X, y = load_dataset(
random_state=self._random_state,
n_classes=3,
Expand All @@ -509,6 +515,7 @@ def test_score_multiclass_liblinear(self):
self.assertEqual(1.0, clf2.fit(X, y).score(X, y))

def test_score_multiclass_sigmoid(self):
"""Test score for multiclass classification with sigmoid kernel."""
X, y = load_dataset(
random_state=self._random_state,
n_classes=3,
Expand All @@ -529,6 +536,7 @@ def test_score_multiclass_sigmoid(self):
self.assertEqual(0.9662921348314607, clf2.fit(X, y).score(X, y))

def test_score_multiclass_linear(self):
"""Test score for multiclass classification with linear kernel."""
warnings.filterwarnings("ignore", category=ConvergenceWarning)
warnings.filterwarnings("ignore", category=RuntimeWarning)
X, y = load_dataset(
Expand Down Expand Up @@ -556,11 +564,13 @@ def test_score_multiclass_linear(self):
self.assertEqual(1.0, clf2.fit(X, y).score(X, y))

def test_zero_all_sample_weights(self):
"""Test exception raises when all sample weights are zero."""
X, y = load_dataset(self._random_state)
with self.assertRaises(ValueError):
Stree().fit(X, y, np.zeros(len(y)))

def test_mask_samples_weighted_zero(self):
"""Check that the weighted zero samples are masked."""
X = np.array(
[
[1, 1],
Expand Down Expand Up @@ -588,6 +598,7 @@ def test_mask_samples_weighted_zero(self):
self.assertEqual(model2.score(X, y, w), 1)

def test_depth(self):
"""Check depth of the tree."""
X, y = load_dataset(
random_state=self._random_state,
n_classes=3,
Expand All @@ -603,6 +614,7 @@ def test_depth(self):
self.assertEqual(4, clf.depth_)

def test_nodes_leaves(self):
"""Check number of nodes and leaves."""
X, y = load_dataset(
random_state=self._random_state,
n_classes=3,
Expand All @@ -622,6 +634,7 @@ def test_nodes_leaves(self):
self.assertEqual(6, leaves)

def test_nodes_leaves_artificial(self):
"""Check leaves of artificial dataset."""
n1 = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test1")
n2 = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test2")
n3 = Snode(None, [1, 2, 3, 4], [1, 0, 1, 1], [], 0.0, "test3")
Expand All @@ -640,12 +653,14 @@ def test_nodes_leaves_artificial(self):
self.assertEqual(2, leaves)

def test_bogus_multiclass_strategy(self):
"""Check invalid multiclass strategy."""
clf = Stree(multiclass_strategy="other")
X, y = load_wine(return_X_y=True)
with self.assertRaises(ValueError):
clf.fit(X, y)

def test_multiclass_strategy(self):
"""Check multiclass strategy."""
X, y = load_wine(return_X_y=True)
clf_o = Stree(multiclass_strategy="ovo")
clf_r = Stree(multiclass_strategy="ovr")
Expand All @@ -655,6 +670,7 @@ def test_multiclass_strategy(self):
self.assertEqual(0.9269662921348315, score_r)

def test_incompatible_hyperparameters(self):
"""Check incompatible hyperparameters."""
X, y = load_wine(return_X_y=True)
clf = Stree(kernel="liblinear", multiclass_strategy="ovo")
with self.assertRaises(ValueError):
Expand All @@ -664,5 +680,48 @@ def test_incompatible_hyperparameters(self):
clf.fit(X, y)

def test_version(self):
"""Check STree version."""
clf = Stree()
self.assertEqual(__version__, clf.version())

def test_graph(self):
"""Check graphviz representation of the tree."""
X, y = load_wine(return_X_y=True)
clf = Stree(random_state=self._random_state)

expected_head = (
"digraph STree {\nlabel=<STree >\nfontsize=30\n"
"fontcolor=blue\nlabelloc=t\n"
)
expected_tail = (
' [shape=box style=filled label="class=1 impurity=0.000 '
'classes=[1] samples=[1]"];\n}\n'
)
self.assertEqual(clf.graph(), expected_head + "}\n")
clf.fit(X, y)
computed = clf.graph()
computed_head = computed[: len(expected_head)]
num = -len(expected_tail)
computed_tail = computed[num:]
self.assertEqual(computed_head, expected_head)
self.assertEqual(computed_tail, expected_tail)

def test_graph_title(self):
X, y = load_wine(return_X_y=True)
clf = Stree(random_state=self._random_state)
expected_head = (
"digraph STree {\nlabel=<STree Sample title>\nfontsize=30\n"
"fontcolor=blue\nlabelloc=t\n"
)
expected_tail = (
' [shape=box style=filled label="class=1 impurity=0.000 '
'classes=[1] samples=[1]"];\n}\n'
)
self.assertEqual(clf.graph("Sample title"), expected_head + "}\n")
clf.fit(X, y)
computed = clf.graph("Sample title")
computed_head = computed[: len(expected_head)]
num = -len(expected_tail)
computed_tail = computed[num:]
self.assertEqual(computed_head, expected_head)
self.assertEqual(computed_tail, expected_tail)

0 comments on commit 93be8a8

Please sign in to comment.