Skip to content

DucTriCE/TwinLiteNet_only_drivable

 
 

Repository files navigation

TwinLiteNet: An Efficient and Lightweight Model for Driveable Area and Lane Segmentation in Self-Driving Cars

Version: Only Drivable Area Detection

Requirement

See requirements.txt for additional dependencies and version requirements.

pip install -r requirements.txt

Data Preparation

  • Download the images from images.

  • Download the annotations of drivable area segmentation from segments.

  • Download the annotations of lane line segmentation from lane.

/data
    bdd100k
        images
            train/
            val/
            test/
        segments
            train/
            val/
        lane
            train/
            val/

Pipeline

Train

python3 main.py

Test

python3 val.py

Inference

Images

python3 test_image.py

Visualize

Drive-able segmentation

### Lane Detection

Acknowledgement

Our source code is inspired by:

Citation

If you find our paper and code useful for your research, please consider giving a star ⭐ and citation 📝 :

@INPROCEEDINGS{10288646,
  author={Che, Quang-Huy and Nguyen, Dinh-Phuc and Pham, Minh-Quan and Lam, Duc-Khai},
  booktitle={2023 International Conference on Multimedia Analysis and Pattern Recognition (MAPR)}, 
  title={TwinLiteNet: An Efficient and Lightweight Model for Driveable Area and Lane Segmentation in Self-Driving Cars}, 
  year={2023},
  volume={},
  number={},
  pages={1-6},
  doi={10.1109/MAPR59823.2023.10288646}}

TwinLiteNetV2: A small stone can kill a giant

🚀 Coming soon!

PWC PWC

Model size
(Height x Width)
Lane
(Accuracy)
Lane
(IOU)
Drivable Area
(mIOU)
params
(M)
FLOPs
(B)
TwinLiteNetV2-Nano 384 x 640 70.8 23.6 87.2 0.03 0.485
TwinLiteNetV2-Small 384 x 640 75.9 28.7 90.4 0.14 1.366
TwinLiteNetv2-Medium 384 x 640 79.3 32.6 92.3 0.62 5.088
TwinLiteNetV2-Large 384 x 640 81.7 34.2 92.9 2.78 21.526

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 94.2%
  • Jupyter Notebook 5.8%