-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathideo_plot.py
executable file
·289 lines (237 loc) · 10.5 KB
/
ideo_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
#!/usr/bin/env python
"""
Demonstrates plotting chromosome ideograms and genes (or any features, really)
using matplotlib.
1) Assumes a file from UCSC's Table Browser from the "cytoBandIdeo" table,
saved as "ideogram.txt". Lines look like this::
#chrom chromStart chromEnd name gieStain
chr1 0 2300000 p36.33 gneg
chr1 2300000 5300000 p36.32 gpos25
chr1 5300000 7100000 p36.31 gneg
2) Assumes another file, "ucsc_genes.txt", which is a BED format file
downloaded from UCSC's Table Browser. This script will work with any
BED-format file.
"""
from matplotlib import pyplot as plt
from matplotlib.collections import BrokenBarHCollection
from matplotlib.collections import PatchCollection
import pandas as pd
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--ref_name", "-r", type=str, required=False, default='hg38')
parser.add_argument("--asm1", "-a", type=str, required=True)
parser.add_argument("--outfile", "-o", type=str, required=True)
parser.add_argument("--chrom", "-c", type=str, required=False)
parser.add_argument("--sample", "-s", type=str, required=True)
parser.add_argument("--asm2", "-b", type=str, required=False)
args = parser.parse_args()
# args = pd.Series(['chm13', 'h1_merge.bed', 'h1.test.pdf', None, 'h1_test', 'h1_merge.bed'], index=['ref_name', 'asm1', 'outfile', 'chrom', 'sample', 'asm2'])
# Here's the function that we'll call for each dataframe (once for chromosome
# ideograms, once for each assembly). The rest of this script will be prepping data
# for input to this function
#
def chromosome_collections(df, y_positions, height, ptype, pname, **kwargs):
"""
Yields BrokenBarHCollection of features that can be added to an Axes
object.
Parameters
----------
df : pandas.DataFrame
Must at least have columns ['chrom', 'start', 'end', 'color']. If no
column 'width', it will be calculated from start/end.
y_positions : dict
Keys are chromosomes, values are y-value at which to anchor the
BrokenBarHCollection
height : float
Height of each BrokenBarHCollection
Additional kwargs are passed to BrokenBarHCollection
"""
del_width = False
if 'width' not in df.columns:
del_width = True
df['width'] = df['end'] - df['start']
# plot each df with
for chrom, group in df.groupby('#chrom'):
xranges = group[['start', 'width']].values
if ptype == 'aln':
pivot = group[['vert']].values
for i, xval in enumerate(xranges):
if pname == 'asm1':
yield BrokenBarHCollection(
[xval], (y_positions[chrom]+(height*(0)**(pivot[i][0])), height), facecolors=asm_color_dict[pname][pivot[i][0]], **kwargs
)
else:
yield BrokenBarHCollection(
[xval], (y_positions[chrom]+(height*(0)**(pivot[i][0]))-(gene_height*2+chrom_height+gene_padding*2), height), facecolors=asm_color_dict[pname][pivot[i][0]], **kwargs
)
elif ptype == 'ideo':
yield BrokenBarHCollection(
xranges, (y_positions[chrom], height), facecolors=group['colors'], **kwargs
)
else:
ends = group[['end']].values
starts = group[['start']].values
pivot = group[['vert']].values
contigs = group[['name']].values
current_sequence = None
for i, xval in enumerate(xranges):
sequence = contigs[i]
if sequence != current_sequence:
current_sequence = sequence
start_hatch = ends[i]
elif current_sequence is not None:
# ax.barh(current_sequence, start - start_hatch, left=start_hatch, height=0.5,
# color=sequence_colors[current_sequence], hatch='/')
hatch_coords = [start_hatch, starts[i]-start_hatch]
if pname == 'asm1':
yield BrokenBarHCollection(
[hatch_coords], (y_positions[chrom]+(height*(0)**(pivot[i][0])), height), facecolors=asm_color_dict[pname][pivot[i][0]], hatch='/', **kwargs
)
else:
yield BrokenBarHCollection(
[hatch_coords], (y_positions[chrom]+(height*(0)**(pivot[i][0]))-(gene_height*2+chrom_height+gene_padding*2), height), facecolors=asm_color_dict[pname][pivot[i][0]], **kwargs
)
current_sequence = sequence
start_hatch = ends[i]
if del_width:
del df['width']
asm_color_dict = {'asm1' : {0 : 'tab:blue', 1 : 'tab:orange'}, 'asm2' : {0 : 'tab:green', 1 : 'tab:purple'}}
# Height of each ideogram
chrom_height = 1.25
# Height of the gene track. Should be smaller than `chrom_spacing` in order to
# fit correctly
gene_height = 2
# Padding between the top of a gene track and its corresponding ideogram
gene_padding = 0.5
# Spacing between consecutive ideograms
chrom_spacing = (chrom_height+gene_height*4+gene_padding)*1.25
# chrom_spacing = 8
# Width, height (in inches)
figsize = (6, 8)
cyto_dict = {
'hg38' : '/net/eichler/vol28/projects/hgsvc/nobackups/svpop/data/anno/bands/bands.bed',
'chm13' : '/net/eichler/vol28/eee_shared/assemblies/CHM13/T2T/v2.0/anno/cyto.bed'
}
ideo = pd.read_csv(
cyto_dict[args.ref_name],
sep='\t'
)
# Decide which chromosomes to use
if not args.chrom:
chromosome_list = [f'chr{i}' for i in range(1, 23)] + ['chrX', 'chrY']
else:
chromosome_list = [args.chrom]
ideo = ideo[ideo['#chrom'].apply(lambda x: x in chromosome_list)]
# Keep track of the y positions for ideograms and genes for each chromosome,
# and the center of each ideogram (which is where we'll put the ytick labels)
ybase = 0
chrom_ybase = {}
gene_ybase = {}
chrom_centers = {}
# Iterate in reverse so that items in the beginning of `chromosome_list` will
# appear at the top of the plot
for chrom in chromosome_list[::-1]:
chrom_ybase[chrom] = ybase
chrom_centers[chrom] = ybase + chrom_height / 2.
gene_ybase[chrom] = ybase + chrom_height + gene_padding
ybase += chrom_height + chrom_spacing
# Add a new column for width
ideo['width'] = ideo['end'] - ideo['start']
# Colors for different chromosome stains
color_lookup = {
'gneg': (1., 1., 1.),
'gpos25': (.6, .6, .6),
'gpos50': (.4, .4, .4),
'gpos75': (.2, .2, .2),
'gpos100': (0., 0., 0.),
'acen': (.8, .4, .4),
'gvar': (.8, .8, .8),
'stalk': (.9, .9, .9),
}
# Add a new column for colors
ideo['colors'] = ideo['gieStain'].apply(lambda x: color_lookup[x])
# Same thing for genes
# df = pd.read_csv(args.asm1, names=['#chrom', 'start', 'end', 'name', 'mapq'])
asm_dict = {}
df = pd.read_csv(args.asm1, names=['#chrom', 'start', 'end', 'name', 'mapq'], sep='\t', header=None)
df = df[df['#chrom'].apply(lambda x: x in chromosome_list)]
df['width'] = df['end'] - df['start']
df = df.sort_values(['#chrom', 'start', 'end']).copy()
chrom_all = pd.DataFrame()
for chrom in df['#chrom'].unique():
chrom_df = df.loc[df['#chrom'] == chrom].copy()
contig_dict = {}
vert = None
for i, contig in enumerate(chrom_df['name']):
vert = 1 if vert != 1 else 0
contig_dict[contig] = vert
chrom_df['vert'] = chrom_df['name'].apply(lambda val: contig_dict[val])
chrom_all = pd.concat([chrom_all, chrom_df])
asm_dict['asm1'] = chrom_all.copy()
# Load and transform
if args.asm2:
df = pd.read_csv(args.asm2, names=['#chrom', 'start', 'end', 'name', 'mapq'], sep='\t', header=None)
df = df[df['#chrom'].apply(lambda x: x in chromosome_list)]
df['width'] = df['end'] - df['start']
df = df.sort_values(['#chrom', 'start', 'end']).copy()
chrom_all = pd.DataFrame()
for chrom in df['#chrom'].unique():
chrom_df = df.loc[df['#chrom'] == chrom].copy()
contig_dict = {}
vert = None
for i, contig in enumerate(chrom_df['name']):
vert = 0 if vert != 0 else 1
contig_dict[contig] = vert
chrom_df['vert'] = chrom_df['name'].apply(lambda val: contig_dict[val])
chrom_all = pd.concat([chrom_all, chrom_df])
asm_dict['asm2'] = chrom_all.copy()
fig = plt.figure(figsize=figsize)
ax = fig.add_subplot(111)
for i, chrom in enumerate(chromosome_list):
ax.barh(y=chrom_ybase[chrom]+(chrom_height/2), width=max(ideo.loc[ideo['#chrom'] == chrom]['end']), height=chrom_height, edgecolor='black', color="None")
# Now all we have to do is call our function for the ideogram data...
print("adding ideograms...")
for collection in chromosome_collections(ideo, chrom_ybase, chrom_height, 'ideo', 'ideogram'):
ax.add_collection(collection)
# ...and the gene data
for asm in asm_dict:
print(f"plotting {asm}")
for modifier in ['aln', 'fill']:
for collection in chromosome_collections(
asm_dict[asm], gene_ybase, gene_height, modifier, asm, alpha=1.0, linewidths=0.5,
):
ax.add_collection(collection)
# define an object that will be used by the legend
class MulticolorPatch(object):
def __init__(self, colors):
self.colors = colors
# define a handler for the MulticolorPatch object
class MulticolorPatchHandler(object):
def legend_artist(self, legend, orig_handle, fontsize, handlebox):
width, height = handlebox.width, handlebox.height
patches = []
for i, c in enumerate(orig_handle.colors):
patches.append(plt.Rectangle([width/len(orig_handle.colors) * i - handlebox.xdescent,
-handlebox.ydescent],
width / len(orig_handle.colors),
height,
facecolor=c,
edgecolor='none'))
patch = PatchCollection(patches,match_original=True)
handlebox.add_artist(patch)
return patch
h, l = ax.get_legend_handles_labels()
h.append(MulticolorPatch(['tab:orange', 'tab:blue']))
l.append("asm1")
h.append(MulticolorPatch(['tab:green', 'tab:purple']))
l.append("asm2")
plt.legend(h, l, loc='lower right',
handler_map={MulticolorPatch: MulticolorPatchHandler()})
# bbox_to_anchor=(.125,.875))
# Axes tweaking
ax.set_yticks([chrom_centers[i] for i in chromosome_list])
ax.set_yticklabels(chromosome_list)
ax.set_title(f"{args.sample} vs {args.ref_name.upper()}")
#ax.axis('off')
plt.savefig(args.outfile, bbox_inches='tight')
plt.close('all')