Table of Contents
An app to predict segmented brain MRI images from a given unsegmented brain MRI
python mricnn_predict.py \ [-v <level>] [--verbosity <level>] \ [--version] \ [--man] \ [--meta] \ [--testDir] \ [--model] \ <inputDir> <outputDir>
mricnn_predict.py
is a ChRIS-based application that...
[-v <level>] [--verbosity <level>] Verbosity level for app. Not used currently. [--version] If specified, print version number. [--man] If specified, print (this) man page. [--meta] If specified, print plugin meta data. [--model] The name of the training model [--testDir] The name of the training dir
This plugin
can be run in two modes: natively as a python package or as a containerized docker image.
To run from PyPI, simply do a
pip install mricnn_predict
and run with
mricnn_predict.py --man /tmp /tmp
to get inline help. The app should also understand being called with only two positional arguments
mricnn_predict.py /some/input/directory /destination/directory
To run using docker
, be sure to assign an "input" directory to /incoming
and an output directory to /outgoing
. Make sure that the $(pwd)/out
directory is world writable!
Now, prefix all calls with
docker run --rm -v $(pwd)/out:/outgoing \
fnndsc/pl-mricnn_predict mricnn_predict.py \
Thus, getting inline help is:
mkdir in out && chmod 777 out
docker run --rm -v $(pwd)/in:/incoming -v $(pwd)/out:/outgoing \
fnndsc/pl-mricnn_predict mricnn_predict.py \
--man \
/incoming /outgoing
mkdir in out && chmod 777 out
docker run --rm -v $(pwd)/in:/incoming -v $(pwd)/out:/outgoing \
fnndsc/pl-mricnn_predict mricnn_predict.py \
--testDir test \
--model model \
/incoming /outgoing