Skip to content

Commit

Permalink
gpt4all and embedding example
Browse files Browse the repository at this point in the history
  • Loading branch information
Florents-Tselai committed Jun 28, 2024
1 parent d505e83 commit 766e96f
Showing 1 changed file with 31 additions and 39 deletions.
70 changes: 31 additions & 39 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,33 +9,41 @@

**tsellm** is the easiest way to access LLMs through your SQLite database.


```shell
pip install tsellm
```

You can then use LLMs in your SQL queries.
You can supply your queries through a simple CLI.
Behind the scenes, **tsellm** is based on the beautiful [llm](https://llm.datasette.io) library,
so you can use any of its plugins:

For example, to access `gpt4all` models

```shell
tsellm my.sqlite3 "select prompt(p, 'orca-2-7b') from my_table"
llm install llm-gpt4all
# Then pick any gpt4all (it will be downloaded automatically the first time you use any model
tsellm :memory: "select prompt('What is the capital of Greece?', 'orca-mini-3b-gguf2-q4_0')"
tsellm :memory: "select prompt('What is the capital of Greece?', 'orca-2-7b')"
```

You can also enter an interactive REPL shell and try things out.
## Embeddings

```shell
tsellm my.sqlite3
llm install llm-sentence-transformers
llm sentence-transformers register all-MiniLM-L12-v2
tsellm :memory: "select embed('Hello', 'sentence-transformers/all-MiniLM-L12-v2')"
```

![til](./tsellm-demo.gif)

## Examples

Let's create a simple SQLite database with some data.
Things get more interesting if you
combine models in your standard SQLite queries.

First, create a db with some data

```bash
sqlite3 prompts.db <<EOF
CREATE TABLE [prompts] (
[prompt] TEXT
[p] TEXT
);
INSERT INTO prompts VALUES('hello world!');
INSERT INTO prompts VALUES('how are you?');
Expand All @@ -44,44 +52,28 @@ INSERT INTO prompts VALUES('1+1=?');
EOF
```

### CLI
With a single query you can access get prompt
responses from different LLMs:

You can use any of the [llm plugins](https://llm.datasette.io/en/stable/plugins/directory.html)

You can execute LLM-powered SQL queries directly in the CLI, like so:

First, let's install a dummy plugin.

```shell
llm install llm-markov
```
```shell
tsellm prompts.db "select prompt(prompt, 'markov') from prompts"
```
Now let's try a more complex one,

```shell
llm install llm-gpt4all
```

```shell
tsellm prompts.db "select prompt(prompt, 'orca-2-7b') from prompts"
```sql
tsellm prompts.db "
select p,
prompt(p, 'orca-2-7b'),
prompt(p, 'orca-mini-3b-gguf2-q4_0'),
embed(p, 'sentence-transformers/all-MiniLM-L12-v2')
from prompts"
```

### Interactive Shell
## Interactive Shell

You can enter an interactive REPL-style shell to manipulate your database.
If you don't provide an SQL query,
you'll enter an interactive shell instead.

```shell
tsellm prompts.db
```

There you can do queries the normal way:
```sql
ALTER TABLE prompts ADD COLUMN orca;
UPDATE PROMPTS SET orca=prompt(prompt, 'orca-2-7b');
```

![til](./tsellm-demo.gif)

## Installation

Expand Down

0 comments on commit 766e96f

Please sign in to comment.