Skip to content

GT-STAR-Lab/CIMER

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Learning Prehensile Dexterity by Imitating and Emulating State-only Observations

This is a repository containing the code for the IEEE RA-L paper "Learning Prehensile Dexterity by Imitating and Emulating State-only Observations".

Project webpage: CIMER

Paper link: Learning Prehensile Dexterity by Imitating and Emulating State-only Observations

Environment Setup

Install mujoco2.0.0

Adapted from Ben's tutorial 2.1

  1. Setup the directory
cd ~
mkdir .mujoco
cd .mujoco
  1. Download the MuJoCo version 2.0 binaries and select the mujoco200 Linux option. Or if you are feeling adventurous here’s the direct download link: https://www.roboti.us/download/mujoco200_linux.zip.
  2. Get the license: Go to https://www.roboti.us/license.html
  3. Unzip the zipped file and place it in the directory ∼/.mujoco/mujoco200 and place your license key (mjkey.txt) in ∼/.mujoco/mujoco200/bin/mjkey.txt and ~/.mujoco/mjkey.txt.
  4. Test this installation by navigating to ∼/.mujoco/mujoco200/bin and executing ./simulate ../model/humanoid.xml.
  5. Add the following 4 commands at the end of ~/.bashrc
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/.mujoco/mujoco200/bin
export MUJOCO_KEY_PATH=~/.mujoco${MUJOCO_KEY_PATH}
export MUJOCO_PY_FORCE_CPU=True
alias MJPL='LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libGLEW.so:/usr/lib/nvidia-384/libGL.so'
  1. Source ~/.bashrc to commit the changes
source ~/.bashrc

Setup repo and install conda environment

  1. Navigate to your installation directory and run:
git clone git@github.com:GT-STAR-Lab/CIMER.git
cd mjrl
conda update conda
conda env create -f setup/env.yml
conda activate mjrl-env
pip install -e .
pip install mujoco-py==2.0.2.8
  1. Verify the installation of mujoco-py by running python in current conda environment (mjrl-env) in terminal and import mujoco_py. If mujoco_py is installed successfully, it should be (compiled and) imported without errors.
python3
import mujoco_py
  1. Install mj_envs:
cd ../mj_envs
pip install -e .
  1. Troubleshooting:
  • Missing GL version: install GLEW by sudo apt-get install -y libglew-dev
  • If a Cython related error occurs when compiling (import mujoco_py, check the version of gcc and Cython
conda install -c conda-forge gcc=12.1.0
pip install "Cython<3"

Policy Visualization

We provide with several trained policies for quick visualization. Under CIMER folder, run the following commands:

Hammer task

CIMER:

conda activate mjrl-env
MJPL python3 hand_dapg/dapg/controller_training/visualize.py --eval_data Samples/Hammer/Hammer_task.pickle --visualize True --save_fig True --config Samples/Hammer/CIMER/job_config.json --policy Samples/Hammer/CIMER/best_eval_sr_policy.pickle

SOIL:

conda activate mjrl-env
MJPL python3 hand_dapg/dapg/SOIL/visualize_policy_on_demos.py --config Samples/Hammer/SOIL/job_config.json --policy Samples/Hammer/SOIL/best_policy.pickle --demos Samples/Hammer/Hammer_task.pickle

Pure RL:

conda activate mjrl-env
MJPL python3 hand_dapg/dapg/SOIL/visualize_policy_on_demos.py --config Samples/Hammer/Pure_RL/job_config.json --policy Samples/Hammer/Pure_RL/best_policy.pickle --demos Samples/Hammer/Hammer_task.pickle

Relocate task

CIMER:

conda activate mjrl-env
MJPL python3 hand_dapg/dapg/controller_training/visualize.py --eval_data Samples/Relocate/Relocate_task.pickle --visualize True --save_fig True --config Samples/Relocate/CIMER/job_config.json --policy Samples/Relocate/CIMER/best_eval_sr_policy.pickle

SOIL:

conda activate mjrl-env
MJPL python3 hand_dapg/dapg/SOIL/visualize_policy_on_demos.py --config Samples/Relocate/SOIL/job_config.json --policy Samples/Relocate/SOIL/best_policy.pickle --demos Samples/Relocate/Relocate_task.pickle

Pure RL:

conda activate mjrl-env
MJPL python3 hand_dapg/dapg/SOIL/visualize_policy_on_demos.py --config Samples/Relocate/Pure_RL/job_config.json --policy Samples/Relocate/Pure_RL/best_policy.pickle --demos Samples/Relocate/Relocate_task.pickle

Door task

CIMER:

conda activate mjrl-env
MJPL python3 hand_dapg/dapg/controller_training/visualize.py --eval_data Samples/Door/Door_task.pickle --visualize True --save_fig True --config Samples/Door/CIMER/job_config.json --policy Samples/Door/CIMER/best_eval_sr_policy.pickle

SOIL:

conda activate mjrl-env
MJPL python3 hand_dapg/dapg/SOIL/visualize_policy_on_demos.py --config Samples/Door/SOIL/job_config.json --policy Samples/Door/SOIL/best_policy.pickle --demos Samples/Door/Door_task.pickle

Pure RL:

conda activate mjrl-env
MJPL python3 hand_dapg/dapg/SOIL/visualize_policy_on_demos.py --config Samples/Door/Pure_RL/job_config.json --policy Samples/Door/Pure_RL/best_policy.pickle --demos Samples/Door/Door_task.pickle

Policy Training

We also provide codes to train new policies. Under CIMER folder, run the following commands:

mkdir -p Training/Hammer
mkdir -p Training/Relocate
mkdir -p Training/Door

Hammer task

CIMER:

conda activate mjrl-env
python3 hand_dapg/dapg/controller_training/job_script.py --output Training/Hammer/CIMER --config hand_dapg/dapg/controller_training/dapg-hammer_PPO.txt --eval_data Samples/Hammer/Hammer_task.pickle

SOIL:

conda activate mjrl-env
python3 hand_dapg/dapg/SOIL/job_script.py --output Training/Hammer/SOIL --config hand_dapg/dapg/SOIL/soil-hammer.txt --eval_data Samples/Hammer/Hammer_task.pickle

Pure RL:

conda activate mjrl-env
python3 hand_dapg/dapg/SOIL/job_script.py --output Training/Hammer/PureRL --config hand_dapg/dapg/SOIL/purerl-hammer.txt --eval_data Samples/Hammer/Hammer_task.pickle

Relocate task

CIMER:

conda activate mjrl-env
python3 hand_dapg/dapg/controller_training/job_script.py --output Training/Relocate/CIMER --config hand_dapg/dapg/controller_training/dapg-relocate_PPO.txt --eval_data Samples/Relocate/Relocate_task.pickle

SOIL:

conda activate mjrl-env
python3 hand_dapg/dapg/SOIL/job_script.py --output Training/Relocate/SOIL --config hand_dapg/dapg/SOIL/soil-relocate.txt --eval_data Samples/Relocate/Relocate_task.pickle

Pure RL:

conda activate mjrl-env
python3 hand_dapg/dapg/SOIL/job_script.py --output Training/Relocate/PureRL --config hand_dapg/dapg/SOIL/purerl-relocate.txt --eval_data Samples/Relocate/Relocate_task.pickle

Door task

CIMER:

conda activate mjrl-env
python3 hand_dapg/dapg/controller_training/job_script.py --output Training/Door/CIMER --config hand_dapg/dapg/controller_training/dapg-door_PPO.txt --eval_data Samples/Door/Door_task.pickle

SOIL:

conda activate mjrl-env
python3 hand_dapg/dapg/SOIL/job_script.py --output Training/Door/SOIL --config hand_dapg/dapg/SOIL/soil-door.txt --eval_data Samples/Door/Door_task.pickle

Pure RL:

conda activate mjrl-env
python3 hand_dapg/dapg/SOIL/job_script.py --output Training/Door/PureRL --config hand_dapg/dapg/SOIL/purerl-door.txt --eval_data Samples/Door/Door_task.pickle

Additional notes

We indeed provide the learned Koopman Matrix for the Motion Generation policy (Under CIMER/hand_dapg/dapg/controller_training/koopman_without_vel folder). If you would like to learn the Motion Generation policy yourself, please refer to our previous project (KODex) for more details.

Bibtex

@ARTICLE{han2024CIMER,
  author={Han, Yunhai and Chen, Zhenyang and Williams, Kyle A and Ravichandar, Harish},
  journal={IEEE Robotics and Automation Letters}, 
  title={Learning Prehensile Dexterity by Imitating and Emulating State-Only Observations}, 
  year={2024},
  volume={9},
  number={10},
  pages={8266-8273}}

Releases

No releases published

Packages

No packages published

Languages