GAMBIT (the Global And Modular BSM Inference Tool) is a software code for performing statistical global fits of generic physics models using a wide range of particle physics and astrophysics data. It consists of a series of modules that provide native simulations of collider and astrophysics experiments, a flexible system for interfacing external codes (the "backend" system), a fully featured statistical and parameter scanning framework, and a host of tools for implementing and using hierarchical models.
Please cite the following GAMBIT papers, depending on your use of different modules:
- GAMBIT Collaboration: P. Athron, et al., GAMBIT: The Global and Modular Beyond-the-Standard-Model Inference Tool, Eur. Phys. J. C 77 (2017) 784, arXiv:1705.07908
- GAMBIT Collider Workgroup: C. Balazs, et al., ColliderBit: A GAMBIT module for the calculation of high energy collider observables and likelihoods, Eur. Phys. J. C 77 (2017) 795, arXiv:1705.07919
- GAMBIT Models Workgroup: P. Athron, et al., SpecBit, DecayBit and PrecisionBit: GAMBIT modules for computing mass spectra, particle decay rates and precision observables, Eur. Phys. J. C 78 (2018) 22, arXiv:1705.07936
- GAMBIT Flavour Workgroup: F. U. Bernlochner, et al., FlavBit: A GAMBIT module for computing flavour observables and likelihoods, Eur. Phys. J. C 77 (2017) 786, arXiv:1705.07933
- GAMBIT Scanner Workgroup: G. D. Martinez, et al., Comparison of statistical sampling methods with ScannerBit, the GAMBIT scanning module, Eur. Phys. J. C 77 (2017) 761, arXiv:1705.07959
- GAMBIT Dark Matter Workgroup: T. Bringmann, et al., DarkBit: A GAMBIT module for computing dark matter observables and likelihoods, Eur. Phys. J. C 77 (2017) 831, arXiv:1705.07920
- NeutrinoBit: M. Chrzaszcz, M. Drewes, T. Gonzalo, J. Harz, S. Krishnamurthy, C. Weniger, A frequentist analysis of three right-handed neutrinos with GAMBIT, Eur. Phys. J. C 80 (2020) 569, arXiv:1908.02302
- GAMBIT Cosmology Workgroup: J. J. Renk, et al., CosmoBit: A GAMBIT module for computing cosmological observables and likelihoods, JCAP 02 (2021) 022, arXiv:2009.03286
- GUM: S. Bloor, T. Gonzalo, P. Scott, C. Chang, A. Raklev, J-E. Camargo-Molina, A. Kvellestad, J. Renk, P. Athron, C. Balázs, The GAMBIT Universal Model Machine: from Lagrangians to Likelihoods, arXiv:2107.00030.
GAMBIT contains interfaces to various external codes, along with scripts for downloading and configuring them. Please cite as appropriate if you use those codes:
- AlterBBN: (i) A. Arbey, AlterBBN: A program for calculating the BBN abundances of the elements in alternative cosmologies, Comput. Phys. Commun. 183 (2012) 1822, arXiv:1106.1363 (ii) A. Arbey, J. Auffinger, K. P. Hickerson and E. S. Jenssen, AlterBBN v2: A public code for calculating Big-Bang nucleosynthesis constraints in alternative cosmologies, arXiv:1806.11095
- CalcHEP: (i) A. Pukhov, CalcHEP 2.3: MSSM, structure functions, event generation, batchs, and generation of matrix elements for other packages, arXiv:hep-ph/0412191, (ii) A. Belyaev, N. D. Christensen, and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comp. Phys. Comm. 184 (2013) 1729–1769, arXiv:1207.6082.
- CLASS: D. Blas, J. Lesgourgues, T. Tram, The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes, JCAP 07 (2011) 034, arXiv: 1104.2933.
- Capt'n General: (i) GAMBIT Collaboration: P. Athron, C. Balazs, et al., Global analyses of Higgs portal singlet dark matter models using GAMBIT, Eur. Phys. J. C 79 (2019) 38, arXiv:1808.10465, (ii) N. Avis Kozar, A. Caddell, L. Fraser-Leach, P. Scott, and A. C. Vincent, Capt’n General: A generalized stellar dark matter capture and heat transport code, (2021), arXiv:2105.06810.
- DarkAges: P. Stoecker, M. Krämer, J. Lesgourgues, V. Poulin, Exotic energy injection with ExoCLASS: Application to the Higgs portal model and evaporating black holes, JCAP 03 (2018) 018, arXiv:1801.01871
- DarkSUSY: (i) P. Gondolo, J. Edsjo, et al., DarkSUSY: computing supersymmetric dark matter properties numerically, JCAP 7 (2004) 8, arXiv: astro-ph/0406204 (ii) T. Bringmann, J. Edsjö, P. Gondolo, P. Ullio and L. Bergström, DarkSUSY 6: An Advanced Tool to Compute Dark Matter Properties Numerically, JCAP 1807 (2018) 033, arXiv:1802.03399,
- DDCalc: (i) GAMBIT Collaboration: P. Athron, C. Balazs, et al. Global analyses of Higgs portal singlet dark matter models using GAMBIT, EPJC 79 (2019) 38, arxiv:1808.10465 (ii) P. Athron, J. M. Cornell, F. Kahlhoefer, J. Mckay, P. Scott, Impact of vacuum stability, perturbativity and XENON1T on global fits of Z_2 and Z_3 scalar singlet dark matter, EPJC 78 (2018) 1830, arxiv:1806.11281 (iii) GAMBIT Dark Matter Workgroup: T. Bringmann, J. Conrad, et al., DarkBit: A GAMBIT module for computing dark matter observables and likelihoods, Eur. Phys. J. C 77 (2017) 831, arXiv:1705.07920
- DirectDM: (i) F. Bishara, J. Brod, B. Grinstein, and J. Zupan, DirectDM: a tool for dark matter direct detection, arXiv:1708.02678. (ii) J. Brod, A. Gootjes-Dreesbach, M. Tammaro, and J. Zupan, Effective Field Theory for Dark Matter Direct Detection up to Dimension Seven, JHEP 10 (2018) 065, arXiv:1710.10218.
- exoCLASS: P. Stoecker, M. Krämer, J. Lesgourgues, V. Poulin, Exotic energy injection with ExoCLASS: Application to the Higgs portal model and evaporating black holes, JCAP 03 (2018) 018, arXiv:1801.01871
- FeynHiggs: (i) H. Bahl, W. Hollik, Precise prediction for the light MSSM Higgs boson mass combining effective field theory and fixed-order calculations, Eur. Phys. J. C 76 (2016) 499, arXiv:1608.01880, (ii) T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, High-precision predictions for the light CP-even Higgs Boson Mass of the MSSM, Phys. Rev. Lett. 112 (2014) 141801, arXiv:1312.4937, (iii) M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, The Higgs Boson Masses and Mixings of the Complex MSSM in the Feynman-Diagrammatic Approach, JHEP 0702 (2007) 047, arXiv:hep-ph/0611326, (iv) G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. Weiglein, Towards High-Precision Predictions for the MSSM Higgs Sector, Eur. Phys. J. C 28 (2003) 133, arXiv:hep-ph/0212020, (v) S. Heinemeyer, W. Hollik, G. Weiglein, The Masses of the Neutral CP-even Higgs Bosons in the MSSM: Accurate Analysis at the Two-Loop Level, Eur.Phys.J.C9:343-366 (1999), arXiv:hep-ph/9812472, (vi) S. Heinemeyer, W. Hollik, G. Weiglein, FeynHiggs: a program for the calculation of the masses of the neutral CP-even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76, arXiv:hep-ph/9812320
- FeynRules: (i) N. D. Christensen and C. Duhr, FeynRules - Feynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614–1641, arXiv:0806.4194, (ii) N. D. Christensen, P. de Aquino, et. al., A Comprehensive approach to new physics simulations, Eur. Phys. J. C71 (2011) 1541, arXiv:0906.2474, (iii) N. D. Christensen, C. Duhr, B. Fuks, J. Reuter, and C. Speckner, Introducing an interface between WHIZARD and FeynRules, Eur. Phys. J. C72 (2012) 1990, arXiv:1010.3251, (iv) A. Alloul, N. D. Christensen, C. Degrande, C. Duhr, and B. Fuks, FeynRules 2.0 - A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250–2300, arXiv:1310.1921.
- FlexibleSUSY: P. Athron, J.-h. Park, D. Stöckinger, and A. Voigt, FlexibleSUSY - A spectrum generator generator for supersymmetric models, Comp. Phys. Comm. 190 (2015) 139, arXiv:1406.2319
- GamLike: GAMBIT Dark Matter Workgroup: T. Bringmann, J. Conrad, et al., DarkBit: A GAMBIT module for computing dark matter observables and likelihoods, Eur. Phys. J. C 77 (2017) 831, arXiv:1705.07920
- GM2Calc: P. Athron, et al., GM2Calc: precise MSSM prediction for (g-2) of the muon, Eur. Phys. J. C 76 (2016) 62, arXiv:1510.08071
- HiggsBounds: (i) P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, and K. E. Williams, HiggsBounds: Confronting Arbitrary Higgs Sectors with Exclusion Bounds from LEP and the Tevatron, Comp. Phys. Comm. 181 (2010) 138, arXiv:0811.4169, (ii) P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, and K. E. Williams, HiggsBounds 2.0.0: Confronting Neutral and Charged Higgs Sector Predictions with Exclusion Bounds from LEP and the Tevatron, Comp. Phys. Comm. 182 (2011) 2605, arXiv:1102.1898, (iii) P. Bechtle, O. Brein, et al., HiggsBounds - 4: Improved Tests of Extended Higgs Sectors against Exclusion Bounds from LEP, the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2693, arXiv:1311.0055
- HiggsSignals: P. Bechtle, S. Heinemeyer, O. Stal, T. Stefaniak, and G. Weiglein, HiggsSignals: Confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2711, arXiv:1305.1933
- MadGraph 5: (i) T. Stelzer and W. F. Long, Automatic generation of tree level helicity amplitudes, Comput. Phys. Commun. 81 (1994) 357–371, arXiv:hep-ph/9401258, (ii) F. Maltoni and T. Stelzer, MadEvent: Automatic event generation with MadGraph, JHEP 02 (2003) 027, arXiv:hep-ph/0208156, (iii) J. Alwall, P. Demin, et. al., MadGraph/MadEvent v4: The New Web Generation, JHEP 09 (2007) 028, arXiv:0706.2334, (iv) J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, and T. Stelzer, MadGraph 5 : Going Beyond, JHEP 06 (2011) 128,arXiv:1106.0522.
- MicrOmegas: G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, micrOMEGAs4.1: Two dark matter candidates, Comp. Phys. Comm. 192 (2015) 322, arXiv:1407.6129
- MontePython: (i) B. Audren, J. Lesgourgues, K. Benabed, S. Prunet, Conservative Constraints on Early Cosmology: an illustration of the Monte Python cosmological parameter inference code, JCAP 02 (2013) 001, arXiv:1210.7183 (ii) T. Brinckmann, J. Lesgourgues, MontePython 3: boosted MCMC sampler and other features, Phys.Dark Univ. 24 (2019) 100260, arXiv:1804.07261
- MultiModeCode: L. C. Price, J. Frazer, J. Xu, H. V. Peiris, R. Easther, MultiModeCode: An efficient numerical solver for multifield inflation, JCAP 03 (2015) 005, arXiv: 1410.0685
- Multinest: F. Feroz, M. P. Hobson, M. Bridges, MULTINEST: an efficient and robust Bayesian inference tool for cosmology and particle physics, MNRAS 398 (2009) 1601–1614, arXiv:0809.3437
- nulike: (i) IceCube Collaboration: M. G. Aartsen et al., Improved limits on dark matter annihilation in the Sun with the 79-string IceCube detector and implications for supersymmetry, JCAP 04 (2016) 022, arXiv:1601.00653, (ii) P. Scott, C. Savage, J. Edsjo the IceCube Collaboration: R. Abbasi et al., Use of event-level neutrino telescope data in global fits for theories of new physics, JCAP 11 (2012) 57, arXiv:1207.0810
- PolyChord: W. J. Handley, M. P. Hobson, M. P. A. N. Lasenby, POLYCHORD: next-generation nested sampling, MNRAS 453 (2015) 4384, arXiv:1506.00171
- Pythia 8: (i) T. Sjostrand, S. Ask, et al., An Introduction to PYTHIA 8.2, Comp. Phys. Comm. 191 (2015) 159, arXiv:1410.3012, (ii) T. Sjostrand, Stephen Mrenna, Peter Skands, Pythia 6.4 Physics and Manual, JHEP 0605 (2006) 026, arXiv:hep-ph/0603175
- SARAH: (i) F. Staub, SARAH, arXiv:0806.0538, (ii) F. Staub, Automatic Calculation of Supersymmetric Renormalization Group Equations and Self Energies, Comp. Phys. Comm. 182 (2011) 808–833, arXiv:1002.0840, (iii) F. Staub, SARAH 3.2: Dirac Gauginos, UFO output, and more, Comp. Phys. Comm. 184 (2013) 1792–1809, arXiv:1207.0906, (iv) F. Staub, SARAH 4 : A tool for (not only SUSY) model builders, Comp. Phys. Comm. 185 (2014) 1773–1790, arXiv:1309.7223, (v) F. Staub, Exploring new models in all detail with SARAH, Adv. High Energy Phys. 2015 (2015) 840780, arXiv:1503.04200.
- SPheno: (i) W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e+ e- colliders, Comput. Phys. Commun. 153 (2003) 275, arXiv:hep-ph/0301101, (ii) W. Porod, F. Staub, SPheno 3.1: extensions including flavour, CP-phases and models beyond the MSSM, Comp. Phys. Comm. 183 (2012) 2458, arXiv:1104.1573
- SuperIso: (i) F. Mahmoudi, SuperIso: A Program for calculating the isospin asymmetry of B -> K* gamma in the MSSM, Comp. Phys. Comm. 178 (2008) 745, arXiv:0710.2067, (ii) F. Mahmoudi, SuperIso v2.3: A Program for calculating flavor physics observables in Supersymmetry, Comp. Phys. Comm. 180 (2009) 1579, arXiv:0808.3144, (iii) F. Mahmoudi, SuperIso v3.0, flavor physics observables calculations: Extension to NMSSM, Comp. Phys. Comm. 180 (2009) 1718.
- SUSY-HD: J. P. Vega, G. Villadoro, SusyHD: Higgs mass Determination in Supersymmetry, JHEP 07 (2015) 159, arXiv:1504.05200
- SUSY-HIT: A. Djouadi, M. M. Mühlleitner M. Spira, Decays of supersymmetric particles: The Program SUSY-HIT (SUspect-SdecaY-Hdecay-InTerface), Acta Phys. Polon. 38 (2007) 635, arXiv: hep-ph/0609292
- Vevacious: J. E. Camargo-Molina, B. O’Leary, W. Porod, and F. Staub, Vevacious: A Tool For Finding The Global Minima Of One-Loop Effective Potentials With Many Scalars, Eur. Phys. J. C73 (2013) 2588, arXiv:1307.1477.
Please see the above list of GAMBIT papers for the main documentation on the design and use of the GAMBIT Core and modules. Further details on the code are available via the doxygen documentation in the gambit/doc directory.
GAMBIT is built using the CMake system. The following libraries and packages must be installed prior to configuration:
COMPULSORY:
- g++/gfortran 5.1 or greater, or icpc/ifort 15.0.2 or greater
- Cmake 2.8.12 or greater
- Python 2.7 or greater (Python 3 is supported)
- Python modules: yaml, future, os, re, datetime, sys, getopt, shutil and itertools.
- git
- Boost 1.48 or greater
- GNU Scientific Library (GSL) 2.1 or greater
- Eigen 3.1.0 or greater
- LAPACK
- pkg-config
OPTIONAL:
- HDF5 (for use of the hdf5 printer)
- MPI (required for parallel sampling)
- axel (speeds up downloads of backends and scanners)
- graphviz (required for model hierarchy and dependency tree plots)
- ROOT (required for RestFrames support in ColliderBit, or the GreAT scanner from ScannerBit)
- Mathematica 7.0 or greater (required for the use of Mathematica backends and GUM)
- UUID (required for the use of the WSTP interface for Mathematica backends and GUM)
- X11 development libraries (required for the use of GUM)
- Boost compiled libraries (required for the use of GUM):
- Boost.Python
- Boost.Filesystem
- Boost.System
- Python modules:
- h5py (for use of the hdf5 printer)
- Cython (required for using the classy backend)
- scipy (required for using the MontePython or DarkAges backends)
- numpy 1.12 or greater (required for using the classy or DarkAges backends)
- dill (required for using the DarkAges backend)
- pandas, numexpr (required for using the MontePython backend)
For building the entirety of GAMBIT without optimisation, at least 10 GB of RAM is required. The build can be completed with less RAM than this if enough modules are ditched when running cmake, with e.g. cmake -Ditch="ColliderBit;DarkBit" ..
, etc. See the Core paper ("GAMBIT: The Global and Modular Beyond-the-Standard-Model Inference Tool", the first link at the top of this README file) for further details of how to ditch components. For a list of commonly used cmake options, see the file CMAKE_FLAGS.md.
Building with optimisation enabled (e.g. using -DCMAKE_BUILD_TYPE=Release) may require more than 20 GB of RAM, depending on the compiler in use and precisely which optimisations it employs. Interprocedural optimisation in particular requires very large amounts of RAM. In general, Release mode is only intended for performance-critical applications, such as when running on supercomputer architectures. It is not advised for laptops.
The basic build instructions are below.
Note that cmake will fail to find some dependencies on some systems without guidance. More information is provided in the Core paper. For a list of commonly used cmake options, see the file CMAKE_FLAGS.md. Configuration examples for specific computing clusters are available via gambit.hepforge.org.
Assuming that you have retrieved the git repository or the tarball and unpacked it:
cd gambit
mkdir build
cd build
cmake ..
make -jn scanners (where n specifies the desired number of cores for the build, e.g. 4)
cmake ..
make -jn gambit
To build all backend codes:
make -jn backends
If you don't want to wait for all backends to build, or if one fails to compile on your system for whatever reason, you can also build individual backends using:
make -jn <backend name>
and clean them with:
make clean-<backend name>
For complete documentation on running GAMBIT, please see the Core and module papers (the latter include examples for both running within the full GAMBIT framework, and running standalone module examples). Here we provide a few basic examples.
To see which backends and scanners have been installed correctly, do:
gambit backends
gambit scanners
To run the GAMBIT spartan example, do
gambit -f yaml_files/spartan.yaml
To run an example GAMBIT MSSM7 scan, do:
gambit -f yaml_files/MSSM7.yaml
Other examples are provided in the yaml_files folder. Further readmes and documentation can also be found in the doc folder.
For a detailed description on how to use GUM please see the GUM paper (reference above). To run the simple model described in the tutorial, the MDMSM, do:
gum -f Tutorial/MDMSM.gum
To revert the changes to the GAMBIT code brought upon by GUM run GUM in revert mode:
gum -r mug_files/MDMSM.mug
Besides the tutorial model, other example models can be found in the gum_files directory.
The BSD license below applies to all source files in the GAMBIT distribution, except for those contained in the contrib/fjcore-3.1.3, contrib/MassSpectra and contrib/multimin directories. The files in those directories belong to the FastJet, FlexibleSUSY/SOFTSUSY and multimin projects respectively, and are distributed under the GNU General Public License, with special exception (granted by the authors of these packages to GAMBIT) that their inclusion in GAMBIT does not require that the rest of GAMBIT be distributed under the GPL. Note that all provisions of the GPL continue to apply to any further redistribution of the files in contrib/fjcore-3.1.3, contrib/MassSpectra and contrib/multimin, whether in source or binary form.
Copyright (c) 2017-2021, The GAMBIT Collaboration All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
-
Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
-
Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
-
Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.