Layout (additive) composite problems and associated oracles. The nonsmooth part is based on StructuredProximalOperators
.
- least squares + l1 regularization
get_lasso_MLE
- logistic + l1 regularization
get_logit_MLE
- trace norm + l regularization
get_tracenorm_MLE
julia> using CompositeProblems
julia> n, m, sparsity = 10, 8, 0.8
julia> pb = get_logit_MLE(n=n, m=m, sparsity=0.8);
julia> x = rand(n);
julia> h = rand(n);
julia> res = zeros(n);
julia> f(pb, x)
julia> ∇f!(pb, res, x);
julia> ∇f(pb, x);
julia> ∇²f_h!(pb, res, x, h);
julia> ∇²f_h(pb, x, h);
julia> get_gradlips(pb);
Some problems use the data from libsvm:
ionosphere
: automatic download;gisette
: download by hand of file gisette_scale.bz2, which should be decompressed in folderinstances
.