Important
This version ofgfwr
gives access to Global Fishing Watch API version 3. Starting April 30th, 2024, this is the official API version. To install the previous version that communicated with API version 2, please refer to branchAPIv2
in this repository.remotes::install_github("GlobalFishingWatch/gfwr", ref = "APIv2")
The gfwr
R package is a simple wrapper for the Global Fishing Watch
(GFW)
APIs.
It provides convenient functions to freely pull GFW data directly into R
in tidy formats.
The package currently works with the following APIs:
- Vessels API: vessel search and identity based on AIS self reported data and public registry information
- Events API: encounters, loitering, port visits, AIS-disabling events and fishing events based on AIS data
- Gridded fishing effort (4Wings API): apparent fishing effort based on AIS data
Note: See the Terms of Use page for GFW APIs for information on our API licenses and rate limits.
You can install the most recent version of gfwr
using:
# Check/install remotes
if (!require("remotes"))
install.packages("remotes")
remotes::install_github("GlobalFishingWatch/gfwr")
gfwr
is also in the rOpenSci
R-universe, and can
be installed like this:
install.packages("gfwr",
repos = c("https://globalfishingwatch.r-universe.dev",
"https://cran.r-project.org"))
Once everything is installed, you can load and use gfwr
in your
scripts with library(gfwr)
library(gfwr)
The use of gfwr
requires a GFW API token, which users can request from
the GFW API Portal.
Save this token to your .Renviron
file using
usethis::edit_r_environ()
and adding a variable named GFW_TOKEN
to
the file (GFW_TOKEN="PASTE_YOUR_TOKEN_HERE"
). Save the .Renviron
file and restart the R session to make the edit effective.
Then use the gfw_auth()
helper function to inform the key on your
function calls. You can use gfw_auth()
directly or save the
information to an object in your R workspace every time and pass it to
subsequent gfwr
functions.
So you can do:
key <- gfw_auth()
or this
key <- Sys.getenv("GFW_TOKEN")
Note:
gfwr
functions are set to usekey = gfw_auth()
by default.
The get_vessel_info()
function allows you to get vessel identity
details from the GFW Vessels
API.
There are two search types: search
, and id
.
search
is performed by using parametersquery
for basic searches andwhere
for advanced searchers using SQL expressionsquery
takes a single identifier that can be the MMSI, IMO, callsign, or shipname as input and identifies all vessels that match.where
search allows for the use of complex search with logical clauses (AND, OR) and fuzzy matching with terms such as LIKE, using SQL syntax (see examples in the function)includes
adds information from public registries. Options are βMATCH_CRITERIAβ, βOWNERSHIPβ and βAUTHORIZATIONSβ
To get information of a vessel using its MMSI, IMO number, callsign or
name, the search can be done directly using the number or the string.
For example, to look for a vessel with MMSI = 224224000
:
get_vessel_info(query = 224224000,
search_type = "search",
key = key)
#> $dataset
#> # A tibble: 1 Γ 1
#> dataset
#> <chr>
#> 1 public-global-vessel-identity:v20231026
#>
#> $registryInfoTotalRecords
#> # A tibble: 1 Γ 1
#> registryInfoTotalRecords
#> <int>
#> 1 1
#>
#> $registryInfo
#> # A tibble: 1 Γ 15
#> id sourceCode ssvid flag shipname nShipname callsign imo
#> <chr> <list> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 e0c9823749264a129d6bβ¦ <chr [6]> 2242β¦ ESP AGURTZAβ¦ AGURTZABβ¦ EBSJ 8733β¦
#> # βΉ 7 more variables: latestVesselInfo <lgl>, transmissionDateFrom <chr>,
#> # transmissionDateTo <chr>, geartypes <list>, lengthM <dbl>, tonnageGt <int>,
#> # vesselInfoReference <chr>
#>
#> $registryOwners
#> # A tibble: 2 Γ 6
#> name flag ssvid sourceCode dateFrom dateTo
#> <chr> <chr> <chr> <list> <chr> <chr>
#> 1 JEALSA RIANXEIRA ESP 306118000 <chr [1]> 2019-10-15T12:47:53Z 2023-09-15T1β¦
#> 2 JEALSA RIANXEIRA ESP 224224000 <chr [1]> 2015-10-13T16:06:33Z 2019-10-15T0β¦
#>
#> $registryPublicAuthorizations
#> # A tibble: 4 Γ 4
#> dateFrom dateTo ssvid sourceCode
#> <chr> <chr> <chr> <list>
#> 1 2019-10-15T00:00:00Z 2023-02-01T00:00:00Z 306118000 <chr [1]>
#> 2 2018-01-09T00:00:00Z 2019-10-24T00:00:00Z 224224000 <chr [1]>
#> 3 2012-01-01T00:00:00Z 2019-01-01T00:00:00Z 224224000 <chr [1]>
#> 4 2014-03-11T00:00:00Z 2016-07-28T00:00:00Z 224224000 <chr [1]>
#>
#> $combinedSourcesInfo
#> # A tibble: 2 Γ 9
#> vesselId geartypes_geartype_nβ¦ΒΉ geartypes_geartype_sβ¦Β² geartypes_geartype_yβ¦Β³
#> <chr> <chr> <chr> <int>
#> 1 6632c9eb⦠PURSE_SEINE_SUPPORT GFW_VESSEL_LIST 2019
#> 2 3c99c326β¦ PURSE_SEINE_SUPPORT GFW_VESSEL_LIST 2015
#> # βΉ abbreviated names: ΒΉβgeartypes_geartype_name, Β²βgeartypes_geartype_source,
#> # Β³βgeartypes_geartype_yearFrom
#> # βΉ 5 more variables: geartypes_geartype_yearTo <int>,
#> # shiptypes_shiptype_name <chr>, shiptypes_shiptype_source <chr>,
#> # shiptypes_shiptype_yearFrom <int>, shiptypes_shiptype_yearTo <int>
#>
#> $selfReportedInfo
#> # A tibble: 2 Γ 13
#> vesselId ssvid shipname nShipname flag callsign imo messagesCounter
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <int>
#> 1 6632c9eb8-8009-⦠3061⦠AGURTZA⦠AGURTZAB⦠BES PJBL 8733⦠21772378
#> 2 3c99c326d-dd2e-⦠2242⦠AGURTZA⦠AGURTZAB⦠ESP EBSJ 8733⦠1887249
#> # βΉ 5 more variables: positionsCounter <int>, sourceCode <list>,
#> # matchFields <chr>, transmissionDateFrom <chr>, transmissionDateTo <chr>
To do more specific searches (imo = '8300949'
), combine different
fields (imo = '8300949' AND ssvid = '214182732'
) and do fuzzy matching
("shipname LIKE '%GABU REEFE%' OR imo = '8300949'"
), use parameter
where
instead of query
:
get_vessel_info(where = "shipname LIKE '%GABU REEFE%' OR imo = '8300949'",
search_type = "search",
key = key)
#> $dataset
#> # A tibble: 1 Γ 1
#> dataset
#> <chr>
#> 1 public-global-vessel-identity:v20231026
#>
#> $registryInfoTotalRecords
#> # A tibble: 1 Γ 1
#> registryInfoTotalRecords
#> <int>
#> 1 1
#>
#> $registryInfo
#> # A tibble: 1 Γ 15
#> id sourceCode ssvid flag shipname nShipname callsign imo
#> <chr> <list> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 b16ca93ea690fc725e92β¦ <chr [2]> 6135β¦ CMR GABU REβ¦ GABUREEFβ¦ TJMC996 8300β¦
#> # βΉ 7 more variables: latestVesselInfo <lgl>, transmissionDateFrom <chr>,
#> # transmissionDateTo <chr>, geartypes <list>, lengthM <dbl>, tonnageGt <int>,
#> # vesselInfoReference <chr>
#>
#> $registryOwners
#> # A tibble: 3 Γ 6
#> name flag ssvid sourceCode dateFrom dateTo
#> <chr> <chr> <chr> <list> <chr> <chr>
#> 1 FISHING CARGO SERVICES PAN 613590000 <chr [1]> 2022-01-24T09:16:50Z 2024-0β¦
#> 2 FISHING CARGO SERVICES PAN 214182732 <chr [1]> 2019-02-23T11:06:32Z 2022-0β¦
#> 3 FISHING CARGO SERVICES PAN 616852000 <chr [1]> 2014-01-04T11:52:41Z 2019-0β¦
#>
#> $registryPublicAuthorizations
#> # A tibble: 0 Γ 1
#> # βΉ 1 variable: <list> <list>
#>
#> $combinedSourcesInfo
#> # A tibble: 3 Γ 9
#> vesselId geartypes_geartype_nβ¦ΒΉ geartypes_geartype_sβ¦Β² geartypes_geartype_yβ¦Β³
#> <chr> <chr> <chr> <int>
#> 1 1da8dbc2β¦ CARRIER GFW_VESSEL_LIST 2022
#> 2 0b7047cb⦠CARRIER GFW_VESSEL_LIST 2019
#> 3 58cf536b⦠CARRIER GFW_VESSEL_LIST 2012
#> # βΉ abbreviated names: ΒΉβgeartypes_geartype_name, Β²βgeartypes_geartype_source,
#> # Β³βgeartypes_geartype_yearFrom
#> # βΉ 5 more variables: geartypes_geartype_yearTo <int>,
#> # shiptypes_shiptype_name <chr>, shiptypes_shiptype_source <chr>,
#> # shiptypes_shiptype_yearFrom <int>, shiptypes_shiptype_yearTo <int>
#>
#> $selfReportedInfo
#> # A tibble: 3 Γ 13
#> vesselId ssvid shipname nShipname flag callsign imo messagesCounter
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <int>
#> 1 1da8dbc23-3c48-⦠6135⦠GABU RE⦠GABUREEF⦠CMR TJMC996 8300⦠72480839
#> 2 0b7047cb5-58c8-⦠2141⦠GABU RE⦠GABUREEF⦠MDA ER2732 8300⦠70035084
#> 3 58cf536b1-1fca-⦠6168⦠GABU RE⦠GABUREEF⦠COM D6FJ2 8300⦠32121624
#> # βΉ 5 more variables: positionsCounter <int>, sourceCode <list>,
#> # matchFields <chr>, transmissionDateFrom <chr>, transmissionDateTo <chr>
- The
id
search allows the user to specify a vector ofvesselId
s
Note:
vesselId
is an internal ID generated by GFW to connect data accross APIs and involves a combination of vessel and tracking data information. It can be retrieved usingget_vessel_info()
and fetching the vector of responses inside$selfReportedInfo$vesselId
. See the identity vignette for more information.
To search by vesselId
, use parameter ids
and specify
search_type = "id"
:
get_vessel_info(ids = "8c7304226-6c71-edbe-0b63-c246734b3c01",
search_type = "id",
key = key)
#> $dataset
#> # A tibble: 1 Γ 1
#> dataset
#> <chr>
#> 1 public-global-vessel-identity:v20231026
#>
#> $registryInfoTotalRecords
#> # A tibble: 1 Γ 1
#> registryInfoTotalRecords
#> <int>
#> 1 2
#>
#> $registryInfo
#> # A tibble: 2 Γ 15
#> id sourceCode ssvid flag shipname nShipname callsign imo
#> <chr> <list> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 a8d00ce54b37add7f85aβ¦ <chr [6]> 2106β¦ CYP FRIO FOβ¦ FRIOFORWβ¦ 5BWC3 9076β¦
#> 2 a8d00ce54b37add7f85aβ¦ <chr [2]> 2733β¦ RUS FRIO FOβ¦ FRIOFORWβ¦ UCRZ 9076β¦
#> # βΉ 7 more variables: latestVesselInfo <lgl>, transmissionDateFrom <chr>,
#> # transmissionDateTo <chr>, geartypes <list>, lengthM <int>, tonnageGt <int>,
#> # vesselInfoReference <chr>
#>
#> $registryOwners
#> # A tibble: 2 Γ 6
#> name flag ssvid sourceCode dateFrom dateTo
#> <chr> <chr> <chr> <list> <chr> <chr>
#> 1 COLINER CYP 210631000 <chr [1]> 2014-01-01T00:16:58Z 2024-05-31T23:44:00Z
#> 2 COLINER CYP 273379740 <chr [1]> 2015-02-27T10:59:43Z 2018-03-21T07:13:09Z
#>
#> $registryPublicAuthorizations
#> # A tibble: 2 Γ 4
#> dateFrom dateTo ssvid sourceCode
#> <chr> <chr> <chr> <list>
#> 1 2022-12-19T00:00:00Z 2024-06-01T00:00:00Z 210631000 <chr [1]>
#> 2 2020-01-01T00:00:00Z 2024-06-01T00:00:00Z 210631000 <chr [1]>
#>
#> $combinedSourcesInfo
#> # A tibble: 2 Γ 9
#> vesselId geartypes_geartype_nβ¦ΒΉ geartypes_geartype_sβ¦Β² geartypes_geartype_yβ¦Β³
#> <chr> <chr> <chr> <int>
#> 1 da1cd7e1β¦ CARRIER GFW_VESSEL_LIST 2015
#> 2 8c730422β¦ CARRIER GFW_VESSEL_LIST 2013
#> # βΉ abbreviated names: ΒΉβgeartypes_geartype_name, Β²βgeartypes_geartype_source,
#> # Β³βgeartypes_geartype_yearFrom
#> # βΉ 5 more variables: geartypes_geartype_yearTo <int>,
#> # shiptypes_shiptype_name <chr>, shiptypes_shiptype_source <chr>,
#> # shiptypes_shiptype_yearFrom <int>, shiptypes_shiptype_yearTo <int>
#>
#> $selfReportedInfo
#> # A tibble: 1 Γ 13
#> vesselId ssvid shipname nShipname flag callsign imo messagesCounter
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <int>
#> 1 8c7304226-6c71-⦠2106⦠FRIO FO⦠FRIOFORW⦠CYP 5BWC3 9076⦠263878798
#> # βΉ 5 more variables: positionsCounter <int>, sourceCode <list>,
#> # matchFields <chr>, transmissionDateFrom <chr>, transmissionDateTo <chr>
To specify more than one vesselId
, you can submit a vector:
get_vessel_info(ids = c("8c7304226-6c71-edbe-0b63-c246734b3c01",
"6583c51e3-3626-5638-866a-f47c3bc7ef7c",
"71e7da672-2451-17da-b239-857831602eca"),
search_type = 'id',
key = key)
#> $dataset
#> # A tibble: 3 Γ 1
#> dataset
#> <chr>
#> 1 public-global-vessel-identity:v20231026
#> 2 public-global-vessel-identity:v20231026
#> 3 public-global-vessel-identity:v20231026
#>
#> $registryInfoTotalRecords
#> # A tibble: 3 Γ 1
#> registryInfoTotalRecords
#> <int>
#> 1 2
#> 2 1
#> 3 1
#>
#> $registryInfo
#> # A tibble: 4 Γ 15
#> id sourceCode ssvid flag shipname nShipname callsign imo
#> <chr> <list> <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 a8d00ce54b37add7f85aβ¦ <chr [6]> 2106β¦ CYP FRIO FOβ¦ FRIOFORWβ¦ 5BWC3 9076β¦
#> 2 a8d00ce54b37add7f85aβ¦ <chr [2]> 2733β¦ RUS FRIO FOβ¦ FRIOFORWβ¦ UCRZ 9076β¦
#> 3 685862e0626f6234c844β¦ <chr [5]> 5480β¦ PHL JOHNREYβ¦ JOHNREYNβ¦ DUQA7 8118β¦
#> 4 b82d02e5c2c11e5fe536β¦ <chr [5]> 4417β¦ KOR ADRIA ADRIA DTBY3 8919β¦
#> # βΉ 7 more variables: latestVesselInfo <lgl>, transmissionDateFrom <chr>,
#> # transmissionDateTo <chr>, geartypes <list>, lengthM <dbl>, tonnageGt <dbl>,
#> # vesselInfoReference <chr>
#>
#> $registryOwners
#> # A tibble: 4 Γ 6
#> name flag ssvid sourceCode dateFrom dateTo
#> <chr> <chr> <chr> <list> <chr> <chr>
#> 1 COLINER CYP 210631000 <chr [1]> 2014-01-01T00β¦ 2024-β¦
#> 2 COLINER CYP 273379740 <chr [1]> 2015-02-27T10β¦ 2018-β¦
#> 3 TRANS PACIFIC JOURNEY FISHING PHL 548012100 <chr [3]> 2017-02-07T00β¦ 2019-β¦
#> 4 DONGWON INDUSTRIES KOR 441734000 <chr [2]> 2014-01-18T19β¦ 2024-β¦
#>
#> $registryPublicAuthorizations
#> # A tibble: 6 Γ 4
#> dateFrom dateTo ssvid sourceCode
#> <chr> <chr> <chr> <list>
#> 1 2022-12-19T00:00:00Z 2024-06-01T00:00:00Z 210631000 <chr [1]>
#> 2 2020-01-01T00:00:00Z 2024-06-01T00:00:00Z 210631000 <chr [1]>
#> 3 2012-01-01T00:00:00Z 2024-05-01T00:00:00Z 548012100 <chr [1]>
#> 4 2012-01-01T00:00:00Z 2017-10-25T00:00:00Z 548012100 <chr [1]>
#> 5 2013-09-20T00:00:00Z 2024-06-01T00:00:00Z 441734000 <chr [1]>
#> 6 2015-10-08T00:00:00Z 2020-07-21T00:00:00Z 441734000 <chr [1]>
#>
#> $combinedSourcesInfo
#> # A tibble: 8 Γ 9
#> vesselId geartypes_geartype_nβ¦ΒΉ geartypes_geartype_sβ¦Β² geartypes_geartype_yβ¦Β³
#> <chr> <chr> <chr> <int>
#> 1 da1cd7e1β¦ CARRIER GFW_VESSEL_LIST 2015
#> 2 8c730422β¦ CARRIER GFW_VESSEL_LIST 2013
#> 3 71e7da67⦠TUNA_PURSE_SEINES COMBINATION_OF_REGIST⦠2017
#> 4 55889aef⦠TUNA_PURSE_SEINES COMBINATION_OF_REGIST⦠2017
#> 5 6583c51e⦠OTHER COMBINATION_OF_REGIST⦠2013
#> 6 6583c51e⦠OTHER COMBINATION_OF_REGIST⦠2013
#> 7 6583c51e⦠TUNA_PURSE_SEINES COMBINATION_OF_REGIST⦠2014
#> 8 6583c51e⦠TUNA_PURSE_SEINES COMBINATION_OF_REGIST⦠2014
#> # βΉ abbreviated names: ΒΉβgeartypes_geartype_name, Β²βgeartypes_geartype_source,
#> # Β³βgeartypes_geartype_yearFrom
#> # βΉ 5 more variables: geartypes_geartype_yearTo <int>,
#> # shiptypes_shiptype_name <chr>, shiptypes_shiptype_source <chr>,
#> # shiptypes_shiptype_yearFrom <int>, shiptypes_shiptype_yearTo <int>
#>
#> $selfReportedInfo
#> # A tibble: 3 Γ 13
#> vesselId ssvid shipname nShipname flag callsign imo messagesCounter
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <int>
#> 1 8c7304226-6c71-⦠2106⦠FRIO FO⦠FRIOFORW⦠CYP 5BWC3 9076⦠263878798
#> 2 71e7da672-2451-⦠5480⦠JOHN RE⦠JOHNREYN⦠PHL DUQA-7 8118⦠1967237
#> 3 6583c51e3-3626-β¦ 4417β¦ ADRIA ADRIA KOR DTBY3 8919β¦ 3742574
#> # βΉ 5 more variables: positionsCounter <int>, sourceCode <list>,
#> # matchFields <chr>, transmissionDateFrom <chr>, transmissionDateTo <chr>
This is useful especially because a vessel can have different
vesselId
s in time. Check the function documentation for examples with
the other function arguments and our dedicated
vignette
for more information about vessel identity .
The get_event()
function allows you to get data on specific vessel
activities from the GFW Events
API.
Event types include apparent fishing events, potential transshipment
events (two-vessel encounters and loitering by refrigerated carrier
vessels), port visits, and AIS-disabling events (βgapsβ). Find more
information in our caveat
documentation.
The Events API uses vesselId
as input, so you always need to use
get_vessel_info()
first to extract vesselId
from $selfReportedInfo
in the response.
vessel_info <- get_vessel_info(query = 224224000, key = key)
id <- vessel_info$selfReportedInfo$vesselId[1]
To get a list of port visits for that vessel:
get_event(event_type = 'PORT_VISIT',
vessels = id,
confidences = 4,
key = key
)
#> [1] "Downloading 24 events from GFW"
#> # A tibble: 24 Γ 11
#> start end id type lat lon regions
#> <dttm> <dttm> <chr> <chr> <dbl> <dbl> <list>
#> 1 2019-11-15 14:15:11 2019-11-19 07:49:20 bbee⦠port⦠5.22 -4.00 <named list>
#> 2 2019-12-06 11:02:09 2019-12-11 10:20:04 bcd9⦠port⦠5.22 -4.01 <named list>
#> 3 2020-01-11 11:18:49 2020-01-15 11:54:49 889b⦠port⦠5.23 -4.01 <named list>
#> 4 2020-01-27 08:04:38 2020-02-23 10:18:02 abed⦠port⦠16.9 -25.0 <named list>
#> 5 2020-02-23 12:44:03 2020-02-24 10:35:02 672b⦠port⦠16.9 -25.0 <named list>
#> 6 2020-03-05 13:28:59 2020-04-05 15:03:18 f539⦠port⦠5.26 -4.03 <named list>
#> 7 2020-04-19 06:16:46 2020-04-21 14:02:19 5ad5⦠port⦠28.1 -15.4 <named list>
#> 8 2020-05-05 06:52:54 2020-05-07 14:22:35 729d⦠port⦠5.23 -4.00 <named list>
#> 9 2020-06-10 13:51:11 2020-06-13 13:51:28 8f14⦠port⦠5.21 -4.05 <named list>
#> 10 2020-06-20 12:33:45 2020-06-20 19:43:10 a8f5⦠port⦠14.7 -17.4 <named list>
#> # βΉ 14 more rows
#> # βΉ 4 more variables: boundingBox <list>, distances <list>, vessel <list>,
#> # event_info <list>
Note: Try narrowing your search using
start_date
andend_date
if the request is too large and returns a time out error (524)
We can also use more than one vesselId
:
get_event(event_type = 'PORT_VISIT',
vessels = c('8c7304226-6c71-edbe-0b63-c246734b3c01',
'6583c51e3-3626-5638-866a-f47c3bc7ef7c'),
confidences = 4,
start_date = "2020-01-01",
end_date = "2020-02-01",
key = key
)
#> [1] "Downloading 3 events from GFW"
#> # A tibble: 3 Γ 11
#> start end id type lat lon regions
#> <dttm> <dttm> <chr> <chr> <dbl> <dbl> <list>
#> 1 2019-12-19 23:05:31 2020-01-24 19:05:18 7cd1e3⦠port⦠28.1 -15.4 <named list>
#> 2 2020-01-26 05:52:47 2020-01-29 14:39:33 c2f096⦠port⦠20.8 -17.0 <named list>
#> 3 2020-01-31 02:20:08 2020-02-03 15:56:31 7c06e4⦠port⦠28.1 -15.4 <named list>
#> # βΉ 4 more variables: boundingBox <list>, distances <list>, vessel <list>,
#> # event_info <list>
Or get encounters for all vessels in a given date range:
get_event(event_type = 'ENCOUNTER',
start_date = "2020-01-01",
end_date = "2020-01-02",
key = key
)
#> [1] "Downloading 248 events from GFW"
#> # A tibble: 248 Γ 11
#> start end id type lat lon regions
#> <dttm> <dttm> <chr> <chr> <dbl> <dbl> <list>
#> 1 2019-12-17 14:10:00 2020-01-02 04:10:00 8c07⦠enco⦠67.5 15.5 <named list>
#> 2 2019-12-17 14:10:00 2020-01-02 04:10:00 8c07⦠enco⦠67.5 15.5 <named list>
#> 3 2019-12-26 00:20:00 2020-01-07 23:50:00 59d4⦠enco⦠-1.82 -113. <named list>
#> 4 2019-12-26 00:20:00 2020-01-07 23:50:00 59d4⦠enco⦠-1.82 -113. <named list>
#> 5 2019-12-26 14:10:00 2020-01-03 05:30:00 60c1⦠enco⦠-1.79 -113. <named list>
#> 6 2019-12-26 14:10:00 2020-01-03 05:30:00 60c1⦠enco⦠-1.79 -113. <named list>
#> 7 2019-12-27 09:10:00 2020-01-06 14:00:00 2159⦠enco⦠9.50 -99.1 <named list>
#> 8 2019-12-27 09:10:00 2020-01-06 14:00:00 2159⦠enco⦠9.50 -99.1 <named list>
#> 9 2019-12-30 02:20:00 2020-01-13 05:40:00 87de⦠enco⦠-1.84 -111. <named list>
#> 10 2019-12-30 02:20:00 2020-01-13 05:40:00 87de⦠enco⦠-1.84 -111. <named list>
#> # βΉ 238 more rows
#> # βΉ 4 more variables: boundingBox <list>, distances <list>, vessel <list>,
#> # event_info <list>
When a date range is provided to get_event()
using both start_date
and end_date
, any event overlapping that range will be returned,
including events that start prior to start_date
or end after
end_date
. If just start_date
or end_date
are provided, results
will include all events that end after start_date
or begin prior to
end_date
, respectively.
Note:
Because encounter events are events between two vessels, a single event will be represented twice in the data, once for each vessel. To capture this information and link the related data rows, theid
field for encounter events includes an additional suffix (1 or 2) separated by a period. Thevessel
field will also contain different information specific to each vessel.
As another example, letβs combine the Vessels and Events APIs to get fishing events for a list of 20 USA-flagged trawlers:
# Download the list of USA trawlers
usa_trawlers <- get_vessel_info(
where = "flag='USA' AND geartypes='TRAWLERS'",
search_type = "search",
key = key
)
# Pass the vector of vessel ids to Events API
usa_trawler_ids <- usa_trawlers$selfReportedInfo$vesselId[1:20]
Note:
get_event()
can receive up to 20 vessel ids at a time
Now get the list of fishing events for these trawlers in January, 2020:
get_event(event_type = 'FISHING',
vessels = usa_trawler_ids,
start_date = "2020-01-01",
end_date = "2020-02-01",
key = key
)
#> [1] "Downloading 37 events from GFW"
#> # A tibble: 37 Γ 11
#> start end id type lat lon regions
#> <dttm> <dttm> <chr> <chr> <dbl> <dbl> <list>
#> 1 2020-01-05 04:58:45 2020-01-05 06:31:45 379d⦠fish⦠43.7 -124. <named list>
#> 2 2020-01-07 05:10:47 2020-01-07 08:57:13 72d1⦠fish⦠28.1 -93.9 <named list>
#> 3 2020-01-08 19:39:55 2020-01-08 22:43:54 94fd⦠fish⦠43.8 -124. <named list>
#> 4 2020-01-09 12:30:54 2020-01-09 17:44:54 51c5⦠fish⦠38.4 -73.5 <named list>
#> 5 2020-01-09 18:32:34 2020-01-09 19:20:15 2068⦠fish⦠38.3 -73.6 <named list>
#> 6 2020-01-09 21:14:43 2020-01-10 10:16:36 c60e⦠fish⦠38.1 -73.8 <named list>
#> 7 2020-01-10 12:35:22 2020-01-10 16:22:01 4f20⦠fish⦠38.0 -73.9 <named list>
#> 8 2020-01-10 18:21:53 2020-01-12 03:13:04 6739⦠fish⦠38.0 -73.9 <named list>
#> 9 2020-01-13 12:45:32 2020-01-13 15:38:38 46f8⦠fish⦠38.0 -73.9 <named list>
#> 10 2020-01-13 13:20:55 2020-01-13 15:07:53 2333⦠fish⦠43.7 -124. <named list>
#> # βΉ 27 more rows
#> # βΉ 4 more variables: boundingBox <list>, distances <list>, vessel <list>,
#> # event_info <list>
When no events are available, the get_event()
function returns
nothing.
get_event(event_type = 'FISHING',
vessels = usa_trawler_ids[2],
start_date = "2020-01-01",
end_date = "2020-01-01",
key = key
)
#> [1] "Your request returned zero results"
#> NULL
The get_raster()
function gets a raster from the 4Wings
API
and converts the response to a data frame. In order to use it, you
should specify:
- The spatial resolution, which can be
LOW
(0.1 degree) orHIGH
(0.01 degree) - The temporal resolution, which can be
HOURLY
,DAILY
,MONTHLY
,YEARLY
orENTIRE
. - The variable to group by:
FLAG
,GEARTYPE
,FLAGANDGEARTYPE
,MMSI
orVESSEL_ID
- The date range
note: this must be 366 days or less
- The region polygon in
sf
format or the region code (such as an EEZ code) to filter the raster - The source for the specified region. Currently,
EEZ
,MPA
,RFMO
orUSER_SHAPEFILE
(forsf
shapefiles).
You can load a sample shapefile inside gfwr
to see how
'USER_SHAPEFILE'
works:
data("test_shape")
get_raster(
spatial_resolution = 'LOW',
temporal_resolution = 'YEARLY',
group_by = 'FLAG',
start_date = '2021-01-01',
end_date = '2021-02-01',
region = test_shape,
region_source = 'USER_SHAPEFILE',
key = key
)
#> Rows: 2526 Columns: 6
#> ββ Column specification ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
#> Delimiter: ","
#> chr (1): flag
#> dbl (5): Lat, Lon, Time Range, Vessel IDs, Apparent Fishing Hours
#>
#> βΉ Use `spec()` to retrieve the full column specification for this data.
#> βΉ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> # A tibble: 2,526 Γ 6
#> Lat Lon `Time Range` flag `Vessel IDs` `Apparent Fishing Hours`
#> <dbl> <dbl> <dbl> <chr> <dbl> <dbl>
#> 1 14 60.9 2021 CHN 3 21.3
#> 2 13.8 59.3 2021 CHN 4 15.2
#> 3 13.7 61.2 2021 CHN 7 63.5
#> 4 13.7 61.8 2021 CHN 6 33.8
#> 5 13.5 61.5 2021 CHN 2 7.7
#> 6 13.4 61.3 2021 IRN 1 3.31
#> 7 13 61.2 2021 CHN 1 10.4
#> 8 15 61.9 2021 CHN 3 9.66
#> 9 14.6 62.7 2021 CHN 3 25.4
#> 10 14.6 63 2021 CHN 3 35.6
#> # βΉ 2,516 more rows
If you want raster data from a particular EEZ, you can use the
get_region_id()
function to get the EEZ id, and enter that code in the
region
argument of get_raster()
instead of the region shapefile
(ensuring you specify the region_source
as 'EEZ'
:
# use EEZ function to get EEZ code of Cote d'Ivoire
code_eez <- get_region_id(region_name = 'CIV', region_source = 'EEZ', key = key)
get_raster(spatial_resolution = 'LOW',
temporal_resolution = 'YEARLY',
group_by = 'FLAG',
start_date = "2021-01-01",
end_date = "2021-10-01",
region = code_eez$id,
region_source = 'EEZ',
key = key)
#> Rows: 611 Columns: 6
#> ββ Column specification ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
#> Delimiter: ","
#> chr (1): flag
#> dbl (5): Lat, Lon, Time Range, Vessel IDs, Apparent Fishing Hours
#>
#> βΉ Use `spec()` to retrieve the full column specification for this data.
#> βΉ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> # A tibble: 611 Γ 6
#> Lat Lon `Time Range` flag `Vessel IDs` `Apparent Fishing Hours`
#> <dbl> <dbl> <dbl> <chr> <dbl> <dbl>
#> 1 5 -5.5 2021 CHN 1 3.66
#> 2 5.2 -4 2021 SLV 3 9.07
#> 3 5.2 -4 2021 LBR 2 58.7
#> 4 4.5 -4 2021 SLV 2 9.14
#> 5 4.5 -3.8 2021 SLV 1 7.15
#> 6 2.5 -5.4 2021 FRA 1 8.92
#> 7 2 -4.2 2021 FRA 1 7.98
#> 8 4.1 -7 2021 ESP 1 2.72
#> 9 3.8 -5.9 2021 BLZ 1 7.67
#> 10 3 -5.7 2021 ESP 1 0.57
#> # βΉ 601 more rows
You could search for just one word in the name of the EEZ and then decide which one you want:
(get_region_id(region_name = 'France', region_source = 'EEZ', key = key))
#> # A tibble: 3 Γ 3
#> id label iso3
#> <dbl> <chr> <chr>
#> 1 5677 France FRA
#> 2 48966 Joint regime area Spain / France FRA
#> 3 48976 Joint regime area Italy / France FRA
From the results above, letβs say weβre interested in the French
Exclusive Economic Zone, 5677
get_raster(spatial_resolution = 'LOW',
temporal_resolution = 'YEARLY',
group_by = 'FLAG',
start_date = "2021-01-01",
end_date = "2021-10-01",
region = 5677,
region_source = 'EEZ',
key = key)
#> Rows: 5660 Columns: 6
#> ββ Column specification ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
#> Delimiter: ","
#> chr (1): flag
#> dbl (5): Lat, Lon, Time Range, Vessel IDs, Apparent Fishing Hours
#>
#> βΉ Use `spec()` to retrieve the full column specification for this data.
#> βΉ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> # A tibble: 5,660 Γ 6
#> Lat Lon `Time Range` flag `Vessel IDs` `Apparent Fishing Hours`
#> <dbl> <dbl> <dbl> <chr> <dbl> <dbl>
#> 1 49 -6.2 2021 FRA 20 216.
#> 2 49.1 -6.1 2021 FRA 14 66.6
#> 3 48.9 -6.2 2021 FRA 14 104.
#> 4 49 -6 2021 FRA 18 264.
#> 5 49 -6.1 2021 BLZ 1 1.49
#> 6 49 -5.9 2021 FRA 19 244.
#> 7 49.1 -5.7 2021 FRA 20 313.
#> 8 49.1 -5.8 2021 BLZ 1 0.17
#> 9 49 -5.8 2021 FRA 21 389.
#> 10 48.9 -5.8 2021 FRA 15 209.
#> # βΉ 5,650 more rows
A similar approach can be used to search for a specific Marine Protected Area, in this case the Phoenix Island Protected Area (PIPA)
# use region id function to get MPA code of Phoenix Island Protected Area
code_mpa <- get_region_id(region_name = 'Phoenix', region_source = 'MPA', key = key)
get_raster(spatial_resolution = 'LOW',
temporal_resolution = 'YEARLY',
group_by = 'FLAG',
start_date = "2015-01-01",
end_date = "2015-06-01",
region = code_mpa$id[1],
region_source = 'MPA',
key = key)
#> Rows: 40 Columns: 6
#> ββ Column specification ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
#> Delimiter: ","
#> chr (1): flag
#> dbl (5): Lat, Lon, Time Range, Vessel IDs, Apparent Fishing Hours
#>
#> βΉ Use `spec()` to retrieve the full column specification for this data.
#> βΉ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> # A tibble: 40 Γ 6
#> Lat Lon `Time Range` flag `Vessel IDs` `Apparent Fishing Hours`
#> <dbl> <dbl> <dbl> <chr> <dbl> <dbl>
#> 1 -3.9 -173. 2015 KOR 1 0.01
#> 2 -4.7 -176. 2015 KOR 3 15.8
#> 3 -2.2 -176. 2015 KIR 1 1.89
#> 4 -2.5 -176. 2015 KOR 1 6.54
#> 5 -2.6 -176. 2015 TWN 1 0.35
#> 6 -2.2 -176. 2015 KIR 1 0.53
#> 7 -2.6 -176. 2015 KOR 1 5.58
#> 8 -2.8 -176. 2015 KOR 1 9.29
#> 9 -2.8 -176. 2015 KOR 2 21.6
#> 10 -2.9 -176. 2015 KOR 2 9.74
#> # βΉ 30 more rows
It is also possible to filter rasters to one of the five regional
fisheries management organizations (RFMO) that manage tuna and tuna-like
species. These include "ICCAT"
, "IATTC"
,"IOTC"
, "CCSBT"
and
"WCPFC"
.
get_raster(spatial_resolution = 'LOW',
temporal_resolution = 'DAILY',
group_by = 'FLAG',
start_date = "2021-01-01",
end_date = "2021-01-04",
region = 'ICCAT',
region_source = 'RFMO',
key = key)
#> Rows: 17985 Columns: 6
#> ββ Column specification ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
#> Delimiter: ","
#> chr (1): flag
#> dbl (4): Lat, Lon, Vessel IDs, Apparent Fishing Hours
#> date (1): Time Range
#>
#> βΉ Use `spec()` to retrieve the full column specification for this data.
#> βΉ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#> # A tibble: 17,985 Γ 6
#> Lat Lon `Time Range` flag `Vessel IDs` `Apparent Fishing Hours`
#> <dbl> <dbl> <date> <chr> <dbl> <dbl>
#> 1 28.4 -96 2021-01-03 USA 1 4.35
#> 2 28.5 -95.7 2021-01-03 USA 5 20.3
#> 3 28.4 -95.9 2021-01-03 USA 3 7.05
#> 4 28.4 -95.8 2021-01-03 USA 3 17.8
#> 5 28.4 -95.7 2021-01-03 USA 4 11.0
#> 6 28.6 -95.5 2021-01-03 USA 2 3.94
#> 7 28.7 -95.5 2021-01-03 USA 2 5.08
#> 8 28.7 -95.4 2021-01-03 USA 2 5.82
#> 9 28.7 -95.3 2021-01-04 USA 1 1
#> 10 28.8 -95.4 2021-01-03 USA 1 0.94
#> # βΉ 17,975 more rows
The get_region_id()
function also works in reverse. If a region id is
passed as a numeric
to the function as the region_name
, the
corresponding region label or iso3 code can be returned. This is
especially useful when events are returned with regions.
# using same example as above
get_event(event_type = 'FISHING',
vessels = usa_trawler_ids,
start_date = "2020-01-01",
end_date = "2020-02-01",
key = key
) %>%
# extract EEZ id code
dplyr::mutate(eez = as.character(purrr::map(purrr::map(regions, purrr::pluck, 'eez'),
paste0, collapse = ','))) %>%
dplyr::select(id, type, start, end, lat, lon, eez) %>%
dplyr::rowwise() %>%
dplyr::mutate(eez_name = get_region_id(region_name = as.numeric(eez),
region_source = 'EEZ',
key = key)$label) %>%
dplyr::select(-start, -end)
#> [1] "Downloading 37 events from GFW"
#> # A tibble: 37 Γ 6
#> # Rowwise:
#> id type lat lon eez eez_name
#> <chr> <chr> <dbl> <dbl> <chr> <chr>
#> 1 379d452b49e0a2077aa92d23ab751de0 fishing 43.7 -124. 8456 United States
#> 2 72d1e4f6bf30b438f60876b0361ce75c fishing 28.1 -93.9 8456 United States
#> 3 94fdf957151db6b7e952ecd52107b443 fishing 43.8 -124. 8456 United States
#> 4 51c5140b261fca6214ea872209b74d85 fishing 38.4 -73.5 8456 United States
#> 5 2068a73ed9b3a4841be99e6f889a5cc8 fishing 38.3 -73.6 8456 United States
#> 6 c60e52370d48a741413094daec2d78ca fishing 38.1 -73.8 8456 United States
#> 7 4f20b44a59be19f188863af0a57e44c9 fishing 38.0 -73.9 8456 United States
#> 8 6739137b68e5fb477de38226f57892f7 fishing 38.0 -73.9 8456 United States
#> 9 46f8debd1e55a894ca26ac74faf11162 fishing 38.0 -73.9 8456 United States
#> 10 23330ffa0e1bbab43ead8328456c45aa fishing 43.7 -124. 8456 United States
#> # βΉ 27 more rows
For API performance reasons, the get_raster()
function restricts
individual queries to a single year of data. However, even with this
restriction, it is possible for API request to time out before it
completes. When this occurs, the initial get_raster()
call will return
an HTTP 524 error, and subsequent API requests using any gfwr
get_
function will return an HTTP 429 error until the original request
completes:
Error in
httr2::req_perform()
: ! HTTP 429 Too Many Requests. β’ Your application token is not currently enabled to perform more than one concurrent report. If you need to generate more than one report concurrently, contact us at apis@globalfishingwatch.org
Although no data was received, the request is still being processed by
the APIs and will become available when it completes. To account for
this, gfwr
includes the get_last_report()
function, which lets users
request the results of their last API request with get_raster()
.
The get_last_report()
function will tell you if the APIs are still
processing your request and will download the results if the request has
finished successfully. You will receive an error message if the request
finished but resulted in an error or if itβs been >30 minutes since the
last report was generated using get_raster()
. For more information,
see the Get last report generated
endpoint
documentation on the GFW API page.
We welcome all contributions to improve the package! Please read our Contribution Guide and reach out!