RF-GNN: Random Forest Boosted Graph Neural Network for Social Bot Detection
- python == 3.7
- torch == 1.8.1+cu102
- numpy == 1.21.6
- scipy == 1.7.2
- pandas == 1.3.5
- scikit-learn == 1.0.2
- torch-cluster == 1.5.9
- torch-geometric == 2.0.4
- torch-scatter == 2.0.8
- torch-sparse == 0.6.12
- torch-spline-conv == 1.2.1
- dataset: including [MGTAB, Twibot20, Cresci15].
- model: including ['GCN', 'GAT', 'SAGE', 'RGCN', 'SGC'].
- labelrate: parameter for labelrate. (default = 0.1)
e.g.
#run RF-GCN on MGTAB (label rate 0.05)
python RF-GNN.py -dataset MGTAB -model GCN --labelrate 0.05
#run RF-GAR on Twibot-20
python RF-GNN.py -dataset Twibot20 -model GAT -smote True
- dataset: including [MGTAB, Twibot20, Cresci15].
- model: including ['GCN', 'GAT', 'SAGE', 'RGCN', 'SGC'].
- ensemble: including [True, False].
- labelrate: parameter for labelrate. (default = 0.1)
e.g.
#run RF-GCN-E on MGTAB
python GNN.py -dataset MGTAB -model GCN -ensemble True
#run GCN on MGTAB
python GNN.py -dataset Cresci15 -model GCN -ensemble False
For TwiBot-20, please visit the Twibot-20 github repository. For MGTAB please visit the MGTAB github repository. For Cresci-15 please visit the Twibot-20 github repository.
We also offer the processed data set: Cresci-15, MGTAB, Twibot-20.