Skip to content

Hamza-A-Ansari/DataAnalysis-using-Python

 
 

Repository files navigation

Data Analysis Using Python

The repository contains all the notebooks and datasets that we are going to use during the course.

Open this repository in Binder

Course Content

  • Lecture 01 - Inspecting Dataframes
  • Lecture 02 - Some basic methods
  • Lecture 03 - Subsetting Columns
  • Lecture 04 - Summary Statistics
  • Lecture 05 - Slicing and Indexing
  • Lecture 06 - Selection with loc and iloc
  • Lecture 07 - Groupby and Pivot Tables
  • Lecture 01 - Importing Multiple Files
  • Lecture 02 - Indexing and Reindexing
  • Lecture 03 - Concatinating and Appending Data
  • Lecture 04 - Joining Tables
  • Lecture 05 - Merging Dataframes

Chapter 03: Data Visualization

  • Lecture 01 - Getting started with Matplotlib
  • Lecture 02 - Matplotlib Subplots
  • Lecture 03 - Matplotlib Interface
  • Lecture 04 - Getting started with Seaborn
  • Lecture 05 - Seaborn Subplots
  • Lecture 06 - Scatter Plot (with pandas, matplotlib and seaborn)
  • Lecture 07 - Histograms (with pandas, matplotlib and seaborn)
  • Lecture 08 - Line Plots (with pandas, matplotlib and seaborn)
  • Lecture 09 - Bar Plots (with pandas, matplotlib and seaborn)
  • Lecture 01 - Handling Missing Data
  • Lecture 02 - Visualizing Missing Data
  • Lecture 03 - Deleting Missing Data
  • Lecture 04 - Interpolating Missing Data
  • Lecture 05 - Removing Duplicate Values
  • Lecture 06 - Parsing Dates
  • Lecture 07 - Regular Expressions
  • Lecture 08 - Type Conversions
  • Lecture 01 - Sets and Events
  • Lecture 02 - Mutually/Non Mutually Exclusive Events
  • Lecture 03 - Independent/Dependent Events
  • Lecture 04 - Laws of Probability
  • Lecture 05 - Conditional Probability: Practice
  • Lecture 06 - Law of Total Probability
  • Lecture 07 - Bayes Theorem
  • Lecture 01 - Descriptive Statistics
  • Lecture 02 - Measure of Variation
  • Lecture 03 - Range
  • Lecture 04 - Standard Deviation
  • Lecture 05 - Percentile
  • Lecture 06 - Boxplot
  • Lecture 07 - Skewness
  • Lecture 08 - Inferential Statistics
  • Lecture 09 - Density Plot
  • Lecture 10 - Srandard Normal Distribution
  • Lecture 11 - Central Limit Theorem
  • Lecture 12 - Hypothesis Testing

About

Complete course of Data Analysis with Python for beginners

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%