A heterogeneous simulator for availability investigation of RRAM accelerators.
MNSIM forked from https://github.com/Zhu-Zhenhua/MNSIM_Python
maestro forked from https://github.com/maestro-project/maestro
- clone the repositories.
git clone https://github.com/blurSong/Mora.git
- build maestro following http://maestro.ece.gatech.edu/docs/build/html/getting_started.html
cd maestro
scons
- provide original DNN .csv file on the /model folder, the csv index and DF value should be like:
mora_layer_param_dicts = {
'IC': 'input_channel',
'OC': 'output_channel',
'FS': 'feature_size',
'KS': 'kernel_size',
'STR': 'stride',
'TYP': 'layer_type',
'RP': 'relu_or_relu&pooling',
'IDX': 'input index',
'APD': 'appending',
}
mora_layer_type_dicts = {
0: "Linear", # MVM, FC
1: "CONV", # convolution
2: "DWCONV", # deepwise convolution
3: "Residual",
4: "Batchnorm",
5: "TRCONV", # transposed convolution
6: "NGCONV", # group convolution
7: "VDP",
8: "VADD",
9: "VMUL"
10: "GEMM"
} # DWCONV is DSCONV for maestro
HW variable params:
--------------------------------------------------------------------------------------------------------------------------
HW | latancy area power energy |
MNSIM | ns um2 W nJ | ①Tile BW = GB/s ②Tile nums(1d, of a chip)
maestro | cycles/ns um2 uW nJ | ①NoC BW = KB/s ②PE nums L2 = Byte
mora | ns um2 W nJ | Top BW = GB/s L2 = MB
--------------------------------------------------------------------------------------------------------------------------
Scenarios:
-------------------------------------------------------------------------
Scenario | PEs Tiles BW/GB/s L2(GLB)/MB
embedded | 1024 12 * 12 1 chip 16 4
edge | 4096 24 * 24 4 chip 64 8
cloud | 16384 48 * 48 16 chip 256 16
-------------------------------------------------------------------------
- Edit the hw_config.m to init the DSE
- Add the workspace folder to PYTHONPATH and run mora
export PYTHONPATH=$PYTHONPATH:$MORAPATH
python mora.py --dataflow DATAFLOW --model MODEL --scenario SCENARIO
-
Model csv name: model_mora.csv
-
Define the layer type TYP using mora_layer_type_dicts
-
How to fill [IC OC FS KS STR]
Linear : fill IC OC, keep FS KS STR = 1
CONV: fill all
DWCONV : fill all (Do make sure IC = OC)
Residual : fill IC FS, keep KS OC STR = 1 (OC must be 1 for maestro) (Do note that res layers wonnt be shown in pytorch print models)
Batchnorm : fill IC OC FS, keep KS STR =1 (Do make sure IC = OC)
PWCONV : use 1x1 CONV
TRCONV : fill all
NGCONV : fill all -
How to fill [RP] [IDX] [APD]
[RP]
0: this layer has no relu next
1: this layer has relu but no pooling next
2 and above: this layer has relu and pooling next, fill in the pooling kernel size
[IDX]
default and usually -1, i.e. the previous layer. the index is just the layer order in our csv
for multi-input layers (concat conv, residual, batchnorm, VDP, VADD, GEMM, etc), fill one index in IDX, the other in APD
[APD]
linear: whether it is the first fc layer (yes=1, no=0)
multi-input layers (concat conv, residual, VDP, VADD, VMUL, GEMM, etc): input index 2
TRCONV: dilation
NGCONV: group number
others: default 0 -
All default blank could be: default value or NaN(blank)
base layer | IC | OC | FS | KS | STR | RP | IDX | APD | Note |
---|---|---|---|---|---|---|---|---|---|
Linear [0] | IC | OC | 1 | 1 | 1 | RP | IDX | 1 (is first fc layer) 0 (is not first fc layer) |
|
CONV [1] | IC | OC | FS | KS | STR | RP | IDX | 0 (default) -x (input index 2 for concat) |
|
DWCONV [2] | IC | OC | FS | KS | STR | RP | IDX | 0 | IC = OC |
Residual [3] | IC | 1 | FS | 1 | 1 | RP | IDX | input index 2 | OC = 1 for maestro |
Batchnorm [4] | IC | OC | FS | 1 | 1 | RP | IDX | 0 | |
TRCONV [5] | IC | OC | FS | KS | STR | RP | IDX | dilation | |
NGCONV [6] | IC | OC | FS | KS | STR | RP | IDX | group number | |
VDP [7] | IC | OC | 1 | 1 | 1 | RP | IDX | input index 2 | IC = OC |
VADD [8] | IC | OC | 1 | 1 | 1 | RP | IDX | input index 2 | IC = OC |
VMUL [9] | IC | OC | 1 | 1 | 1 | RP | IDX | input index 2 | IC = OC |
GEMM [10] | M | N | K | 1 | 1 | RP | IDX | input index 2 | MK * KN |