Install conda and than run this:
conda env create --file vision.yml
# usage: main.py [-h] [--parking] [--kitty] [--malaga] [--plot] [--plot2]
# optional arguments:
# -h, --help show this help message and exit
# --parking, -p the parking dataset
# --kitty, -k the kitty dataset
# --malaga, -m the malaga dataset
# --plot, -o plot the results
# --plot2, -o2 plot ground truth vs vo pipeline
# Example for plotting and selecting the parking dataset
# plot2 plots the groundtruth and vo pipeline output (only the camera poses (only kitti and parking))
python src/main.py -o -p
To download the zipfiles for the project you can use this script. (I hope it works on windows/mac)
python data/download.py
- how to use dataclass => code example
- put init camera pose stuff into a init file
- Add PnP and write code example with the just the next frame
- add visualisation that shows which 3D points the next camera posed used
- implemented continuous pipeline (works with all frames)
- add feature matches visualisation (use heatmap if image is not working)
- KLT Tracker: Use this algorithm to track the pixels inside the matches
- Boundle Adjustment
- Record Dataset
- Loop detection
- Compare Sift vs Harris vs FAST vs SURF
- (Kalman Filter)
- Feature detection and matching ( Use library, OpenCV, use efficent version?, SIFT / RANSAC ? )
$\sqrt{}$ - Setup pipeline and visualization
$\sqrt{}$ - Triangulation
$\sqrt{}$