Narzędzia i kod wspierający tworzenie modelu do detekcji obrazu na konkurs kopalnie marsjańskie w ramach Droniady 2024
Komenda do uruchomienia modelu do trenowania:
yolo task=detect mode=train model=yolov8n.pt imgsz=640 data=kopalnie_v8.yaml epochs=50 batch=16 name={name} cache
Komenda powinna być uruchomiona z poziomu katalogu zawierającego plik kopalnie_v8.yaml
(katalog model
).
Build martian mines system image (optional) - if the newest image is not avalible on docker hub or you introduced some modifications in Dockerfile.
docker build -f docker/Dockerfile-minimal-intel-ros -t highflyers/martian-minimal-intel-ros .
Run uav_simulation container according to a readme from repo uav_simulation
Run the container with martian mines main system:
# replace <path_to_repo> with the absolute path to your repo, for example: /home/user/Documents/repos/martian-mines-object-detection
docker run --privileged --rm --gpus all -it --net host --ipc host \
-e DISPLAY=${DISPLAY} \
-e NVIDIA_VISIBLE_DEVICES=all \
-e NVIDIA_DRIVER_CAPABILITIES=all \
-e ROS_DOMAIN_ID=0 \
-v /tmp/.X11-unix:/tmp/.X11-unix:ro \
-v <path_to_repo>/ros:/home/docker/ws/src/ \
highflyers/martian-minimal-intel-ros /bin/bash
Build ros workspace and source setup script
catkin build
source devel/setup.bash
Run our detector - it should show a preview of video from simulation, with marked detected objects.
roslaunch martian-mines detector.launch