Skip to content

Jcharis/Streamlit_DataScience_Apps

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

53 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Streamlit_DataScience_Apps

Streamlit Data Science and ML Apps in Python

How to Deploy Streamlit Apps to Heroku

1. Create An Account Heroku by signing up.

2. Install Heroku CLI

3. Create Your Github Repository for your app

4. Build your app

5. Login to Heroku From the CLI

heroku Login

6. Create Your 3 Required Files(setup.sh,Procfile,requirements.txt)

  • Place the code below in their respective files
Code for setup.sh
mkdir -p ~/.streamlit/

echo "\
[general]\n\
email = \"your-email@domain.com\"\n\
" > ~/.streamlit/credentials.toml

echo "\
[server]\n\
headless = true\n\
enableCORS=false\n\
port = $PORT\n\
" > ~/.streamlit/config.toml
Code for setup.sh (Alternate with no credentials.toml)
mkdir -p ~/.streamlit/

echo "\
[server]\n\
headless = true\n\
port = $PORT\n\
enableCORS = false\n\
\n\
" > ~/.streamlit/config.toml
Code For Procfile
web: sh setup.sh && streamlit run your_app.py

7. Create App with CLI

heroku create name-of-your-app

8. Commit and Push Your Code to Github

git add your app 
git commit -m "your comment description"
git push

9. Push To Heroku to Deploy

git push heroku master

Credits:

gabe_maldonado

Streamlit team

Thanks For Your Time

####By

  • Jesse E.Agbe(JCharis)
  • Jesus Saves@JCharisTech

About

Streamlit Data Science and ML Apps in Python

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages