-
Notifications
You must be signed in to change notification settings - Fork 16
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Baseline Smart Persistence model added
- Loading branch information
Jeevesh8
committed
May 21, 2020
1 parent
c55316c
commit 210e4e1
Showing
2 changed files
with
102 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,87 @@ | ||
import argparse | ||
import numpy as np | ||
from scipy.interpolate import griddata | ||
import pandas as pd | ||
|
||
def date_to_nth_day(year, month, day): | ||
date = pd.Timestamp(year=year,month=month,day=day) | ||
new_year_day = pd.Timestamp(year=year, month=1, day=1) | ||
return (date - new_year_day).days + 1 | ||
|
||
def get_df(csv_paths) : | ||
df_lis = [] | ||
for path in csv_paths : | ||
df_lis.append(pd.read_csv(path)) | ||
final_df = pd.concat(df_lis,ignore_index=True).drop(['Unnamed: 0'],axis=1) | ||
return final_df | ||
|
||
def day_passed_ratio(hour, minute) : | ||
return (hour*60+minute)/24*60 | ||
|
||
def caller(series) : | ||
series['nthDay'] = int(date_to_nth_day(series['Year'], series['Month'], series['Day'])) | ||
series['diff_hours'] = day_passed_ratio(series['Hour'], series['Minute']) | ||
return series | ||
|
||
def lossfn(a, b, loss='mse') : | ||
if loss == 'mse' : | ||
return (a-b)*(a-b) | ||
elif loss == 'mape' : | ||
return np.abs(a-b)/np.abs(b) | ||
elif loss == 'mae' : | ||
return np.abs(a-b) | ||
elif loss == 'mbe' : | ||
return a-b | ||
|
||
if __name__ == '__main__' : | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument('--loss', default='mse', help='Choose from mse, mbe, mae, mape') | ||
parser.add_argument('--test_start_year', type=int, help='Starting test year. Use only when mode is avg_loss') | ||
parser.add_argument('--test_final_year', type=int, help='Final test year. Use only when mode is avg_loss.') | ||
parser.add_argument('--tr_start_year', type=int, help='Training Start year') | ||
parser.add_argument('--tr_final_year', type=int, help='Training Final year') | ||
parser.add_argument('--root_dir') | ||
parser.add_argument('--steps', type=int, default=1, help='How many values do you want to skip b/w 2 consecutive predictions?') | ||
parser.add_argument('--get_preds', action='store_true', help='Set this flag if you want to get predictions of Smart Persistence') | ||
|
||
csv_paths=[root_dir+'Data'+str(i)+'.csv' for i in range(tr_start_year, tr_end_year+1)] | ||
final_df = get_df(csv_paths) | ||
csv_paths=[root_dir+'Data'+str(i)+'.csv' for i in range(val_start_year, val_end_year+1)] | ||
val_final_df = get_df(csv_paths) | ||
|
||
final_df['nthDay'] = np.nan | ||
final_df['diff_hours'] = np.nan | ||
final_df = final_df.apply(caller, axis=1) | ||
|
||
val_final_df['nthDay'] = np.nan | ||
val_final_df['diff_hours'] = np.nan | ||
val_final_df = final_df.apply(caller, axis=1) | ||
|
||
final_df = final_df[['GHI', 'nthDay', 'diff_hours']] | ||
|
||
values = final_df.groupby(['nthDay','diff_hours']).mean() | ||
values = values.reset_index() | ||
|
||
points = values[['nthDay', 'diff_hours']].to_numpy() | ||
ghi_values = values[['GHI']].to_numpy() | ||
|
||
points_to_interpolate_to = val_final_df[['nthDay', 'diff_hours']][::args.steps].to_numpy() | ||
real_ghi_vals = val_final_df[['GHI']][::args.steps].to_numpy() | ||
|
||
clear_sky_preds = griddata(points, ghi_values, points_to_interpolate_to, method='linear') | ||
|
||
smart_persistence_preds = [] | ||
loss = 0 | ||
for i in range(len(real_ghi_vals)) : | ||
if i==0 : | ||
continue | ||
if clear_sky_preds[i-1]==0 : | ||
smart_persistence_preds.append(clear_sky_preds[i]) | ||
else : | ||
smart_persistence_preds.append( (clear_sky_preds[i]*real_ghi_vals[i-1])/clear_sky_preds[i-1]) | ||
loss += lossfn(smart_persistence_preds[i-1], real_ghi_vals[i], args.loss) | ||
|
||
if arge.get_preds : | ||
print(smart_persistence_preds) | ||
|
||
print("Loss=", loss) |