Skip to content

Build machine learning models to predict default behaviour on credit card for bank

Notifications You must be signed in to change notification settings

Jeremyzzzz/credit_card_default_analysis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 

Repository files navigation

Credit Card Default Analysis

Build machine learning models to predict default behavior on credit card for bank in Taiwan.

Dataset Information


This dataset contains information on default payments, demographic factors, credit data, history of payment, and bill statements of credit card clients in Taiwan from April 2005 to September 2005.

Here is the Link to download data.


My Pipeline


alt text

Content


There are 30000 examples in this dataset.

There are 25 variables:

ID: ID of each client

LIMIT_BAL: Amount of given credit in NT dollars (includes individual and family/supplementary credit

SEX: Gender (1=male, 2=female)

EDUCATION: (1=graduate school, 2=university, 3=high school, 4=others, 5=unknown, 6=unknown)

MARRIAGE: Marital status (1=married, 2=single, 3=others)

AGE: Age in years

PAY_0: Repayment status in September, 2005 (-1=pay duly, 1=payment delay for one month, 2=payment delay for two months, … 8=payment delay for eight months, 9=payment delay for nine months and above)

PAY_2: Repayment status in August, 2005 (scale same as above)

PAY_3: Repayment status in July, 2005 (scale same as above)

PAY_4: Repayment status in June, 2005 (scale same as above)

PAY_5: Repayment status in May, 2005 (scale same as above)

PAY_6: Repayment status in April, 2005 (scale same as above)

BILL_AMT1: Amount of bill statement in September, 2005 (NT dollar)

BILL_AMT2: Amount of bill statement in August, 2005 (NT dollar)

BILL_AMT3: Amount of bill statement in July, 2005 (NT dollar)

BILL_AMT4: Amount of bill statement in June, 2005 (NT dollar)

BILL_AMT5: Amount of bill statement in May, 2005 (NT dollar)

BILL_AMT6: Amount of bill statement in April, 2005 (NT dollar)

PAY_AMT1: Amount of previous payment in September, 2005 (NT dollar)

PAY_AMT2: Amount of previous payment in August, 2005 (NT dollar)

PAY_AMT3: Amount of previous payment in July, 2005 (NT dollar)

PAY_AMT4: Amount of previous payment in June, 2005 (NT dollar)

PAY_AMT5: Amount of previous payment in May, 2005 (NT dollar)

PAY_AMT6: Amount of previous payment in April, 2005 (NT dollar)

default.payment.next.month: Default payment (1=yes, 0=no)


Acknowledgements


Any publications based on this dataset should acknowledge the following:

Lichman, M. (2013). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.

The original dataset can be found here at the UCI Machine Learning Repository.

About

Build machine learning models to predict default behaviour on credit card for bank

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published