Skip to content

Tools for doing image-based mushroom identification

License

Notifications You must be signed in to change notification settings

Jesssullivan/image-identifer

Β 
Β 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

43 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Image-based mushroom identification

Local Processing:

Remote & Notebook Processing:


Artifacts:

Dataset: images.tgz train.tgz test.tgz
Annotator json: images.json categories.json config.json
@ai.columbari.us: Web Annotator! mo_example_task.tar.gz mo_example_task.zip

Setup (Locally)

# venv:
python3 -m venv mushroomobserver_venv
source mushroomobserver_venv/bin/activate
pip3 install -r requirements.txt

preprocess: (Locally)

python3 preprocess
  • Fetches & saves off gbif archive to ./static/
    • Checks the archive, tries loading it into memory etc
  • Fetches Leaflet Annotator binary & licenses from JessSullivan/MerlinAI-Interpreters
  • Generates an images.json annotation file from the assets selected by Joe & Nathan
  • Generates an categories.json file from the annotatable classes selected by Joe & Nathan
  • Downloads, organizes the selected assets from images.mushroomoberver.org at ./static/images/<category>/<id>.jpg
    • writes out images archive
  • More or less randomly divvies up testing & training image sets
    • writes out example testing/training archives; (while training it'll probably be easier to resample directly from images.tgz from keras)

Structures:

  • Leaflet Annotator images.json Structure:
    • id: filename The MO image filename
    • category_id: The binomen defined in the ./static/sample_select_assets.csv; for directories and URIs this is converted to snake case.
    • taxon_id: the MO taxon id integer in the case of *_v1.csv; otherwise duplicate of category_id for now (eg *_v2.csv)
    • url: Temporary elastic ip address this asset will be available from, just to reduce any excessive / redundant traffic to images.mushroomobserver.org
    • src: imageURL The asset's source URL form Mushroom Observer
    [{
    "id": "290214.jpg",
    "taxon_id": "12326",
    "category_id": "Peltula euploca",
    "url": "https://mo.columbari.us/static/images/peltula_euploca/290214.jpg",
    "src": "https://mushroomobserver.org/images/640/290214.jpg"
    }]
    
  • ./static/ directory structure following python3 preprocess:
    β”œβ”€β”€ static
    β”œβ”€β”€ categories.json
    β”œβ”€β”€ gbif.zip
    β”œβ”€β”€ images
    |   ...
    β”‚Β Β  └── peltula_euploca
    β”‚Β Β      β”œβ”€β”€ <123456>.jpg
    β”‚Β Β      ...
    β”‚Β Β      └── <654321>.jpg
    β”‚Β Β  ...
    β”œβ”€β”€ images.tgz
    β”œβ”€β”€ testing
    |   ...
    β”‚Β Β  └── peltula_euploca
    β”‚Β Β      β”œβ”€β”€ <234567>.jpg
    β”‚Β Β      ...
    β”‚Β Β      └── <765432>.jpg
    β”‚Β Β  ...
    β”œβ”€β”€ testing.tgz
    β”œβ”€β”€ training
    |   ...
    β”‚Β Β  └── peltula_euploca
    β”‚Β Β      β”œβ”€β”€ <345678>.jpg
    β”‚Β Β      ...
    β”‚Β Β      └── <876543>.jpg
    β”‚Β Β  ...
    β”œβ”€β”€ images.json
    β”œβ”€β”€ training.tgz
    β”œβ”€β”€ js
    β”‚Β Β  β”œβ”€β”€ leaflet.annotation.js
    β”‚Β Β  └── leaflet.annotation.js.LICENSE.txt
    β”œβ”€β”€ md
    β”‚Β Β  β”œβ”€β”€ output_10_0.png
    β”‚Β Β  β”œβ”€β”€ output_11_0.png
    β”‚Β Β  β”œβ”€β”€ output_17_0.png
    β”‚Β Β  └── output_27_0.png
    β”œβ”€β”€ mo_example_task
    β”‚Β Β  β”œβ”€β”€ categories.json
    β”‚Β Β  β”œβ”€β”€ config.json
    β”‚Β Β  └── images.json
    β”œβ”€β”€ sample_select_assets_v1.csv
    β”œβ”€β”€ sample_select_assets_v2.csv
    β”œβ”€β”€ test.tgz
    └── train.tgz
    ...
    

Train (Locally)

python3 train
  • Fetches, divvies & shuffles train / validation sets from within Keras using archive available at mo.columbari.us/static/images.tgz
  • More or less running Google's demo transfer learning training script in train/training_v1.py as of 03/17/21, still need to bring in training operations and whatnot from merlin_ai/ repo --> experiment with Danish Mycology Society's ImageNet v4 notes

Local Jupyter:

  • One may also open and run notebooks locally like this:
    • rename ipython notebook:
    cp train/notebook/training_v1.ipynb.bak train/notebook/training_v1.ipynb
    
    • launch jupyter:
    jupyter notebook
    
    • or without authentication:
    jupyter notebook --ip='*' --NotebookApp.token='' --NotebookApp.password=''
    

Google Colab:

Notes:

Preprocess: (Jupyter)

from load_dwca import MODwca
from preprocess import Preprocess
from common import *
"""MODwca():
fetch & save off the gbif export
make sure we can load the dwca archive into memory:
"""
dwca = MODwca()

"""BuildImages():
functions to construct image dataset and annotator artefacts
"""
buildData = Preprocess()

buildData.write_images_json()

buildData.fetch_leaflet_tool()

buildData.fetch_online_images(_json=STATIC_PATH + "images.json")

buildData.export_tgz()

buildData.split_training_testing()

buildData.write_categories_json()

Train: (Jupyter)

import matplotlib.pyplot as plt
import numpy as np
import os
import PIL
import tensorflow as tf
import pathlib
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential
dataset_url = "https://mo.columbari.us/static/images.tgz"
data_dir = tf.keras.utils.get_file('', origin=dataset_url, untar=True)
data_dir = pathlib.Path(data_dir)

image_count = len(list(data_dir.glob('*/*.jpg')))
print("Read " + str(image_count) + " images into Keras!")
armillaria_tabescens = list(data_dir.glob('armillaria_tabescens/*'))
PIL.Image.open(str(armillaria_tabescens[0]))

png

PIL.Image.open(str(armillaria_tabescens[1]))

png

load parameters:

batch_size = 32
img_height = 500
img_width = 375

train_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.1,
subset="training",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size)
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.1,
subset="validation",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size)
class_names = train_ds.class_names
num_classes = len(class_names)

print("Read " + str(num_classes) + " classification classes:")

x=1
for _name in class_names:
  print(str(x) + ": " + _name)
  x += 1

Visualize:

import matplotlib.pyplot as plt

plt.figure(figsize=(10, 10))
for images, labels in train_ds.take(1):
for i in range(9):
  ax = plt.subplot(3, 3, i + 1)
  plt.imshow(images[i].numpy().astype("uint8"))
  plt.title(class_names[labels[i]])
  plt.axis("off")

png

for image_batch, labels_batch in train_ds:
  print("Processed image batch shape: " + image_batch.shape.__str__())
  print("Processed labels batch shape: " + labels_batch.shape.__str__())
  break
AUTOTUNE = tf.data.AUTOTUNE

train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
normalization_layer = layers.experimental.preprocessing.Rescaling(1./255)
normalized_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
image_batch, labels_batch = next(iter(normalized_ds))
first_image = image_batch[0]
# Notice the pixels values are now in `[0,1]`.
print(np.min(first_image), np.max(first_image))
data_augmentation = keras.Sequential(
[
  layers.experimental.preprocessing.RandomFlip("horizontal",
                                               input_shape=(img_height,
                                                            img_width,
                                                            3)),
  layers.experimental.preprocessing.RandomRotation(0.1),
  layers.experimental.preprocessing.RandomZoom(0.1),
]
)
model = Sequential([
data_augmentation,
layers.experimental.preprocessing.Rescaling(1./255),
layers.Conv2D(16, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Conv2D(32, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Conv2D(64, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Dropout(0.2),
layers.Flatten(),
layers.Dense(128, activation='relu'),
layers.Dense(num_classes)
])
model.compile(optimizer='adam',
            loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
            metrics=['accuracy'])
model.summary()
epochs = 15
history = model.fit(
train_ds,
validation_data=val_ds,
epochs=epochs
)
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

loss = history.history['loss']
val_loss = history.history['val_loss']

epochs_range = range(epochs)

plt.figure(figsize=(8, 8))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

png

Predict:

tabescens_url = "https://www.mushroomexpert.com/images/kuo6/armillaria_tabescens_06.jpg"
tabescens_path = tf.keras.utils.get_file('armillaria_tabescens_06', origin=tabescens_url)

img = keras.preprocessing.image.load_img(
  tabescens_path, target_size=(img_height, img_width)
)
img_array = keras.preprocessing.image.img_to_array(img)
img_array = tf.expand_dims(img_array, 0)

predictions = model.predict(img_array)
score = tf.nn.softmax(predictions[0])

print(
  "This image most likely belongs to {} with a {:.2f} percent confidence."
  .format(class_names[np.argmax(score)], 100 * np.max(score))
)
This image most likely belongs to armillaria_tabescens with a 45.49 percent confidence.

About

Tools for doing image-based mushroom identification

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.3%
  • Shell 1.7%