This is a repository for the paper "Deep Learning for Simultaneous Seismic Image Super-Resolution and Denoising" (IEEE Transactions on Geoscience and Remote Sensing).
The frame and some code are from sanghyun-son/EDSR-PyTorch. src/loss/msssim.py was modified based on jorge-pessoa/pytorch-msssim.
SeismicSuperResolution/
├───── data/
│ ├───── sx/ # high resolution data
│ ├───── nx2/ # low resolution data
│ └───── field/ # field data
│ ├───── kumano2_608x400.dat
│ ├───── lulia_592x400.dat
│ ├───── tp_352x240.dat
│ └───── ...
├───── experiment/
│ ├───── alpha6/
│ │ ├───── model/
│ │ │ ├───── model_best.pt # in google drive
│ │ │ └───── ...
│ │ └───── ...
│ └───── ...
│
└───── src/
└───── ...
All the data used in this paper is avaliable in google drive https://drive.google.com/drive/folders/1DuMdclOdeXDgGBOhsHSlEdTB_LvhIH-X?usp=sharing. And the model experiment/alpha6/model/model_best.pt
can also be obtained by above google drive link.
All code is in the directory src
.
- python 3.6.9
- pytorch 1.6.0
- numpy 1.17.4
- cudatoolkit 10.1.243
- matplotlib 3.1.1
If you find this work useful in your research, please consider citing:
Plain Text
J. Li, X. Wu and Z. Hu, "Deep Learning for Simultaneous Seismic Image Super-Resolution and Denoising," in IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-11, 2022, Art no. 5901611, doi: 10.1109/TGRS.2021.3057857.
BibTex
@article{deep2022li,
author={Li, Jintao and Wu, Xinming and Hu, Zhanxuan},
journal={IEEE Transactions on Geoscience and Remote Sensing},
title={Deep Learning for Simultaneous Seismic Image Super-Resolution and Denoising},
year={2022},
volume={60},
number={5901611},
pages={1-11},
doi={10.1109/TGRS.2021.3057857}}