Skip to content

Commit

Permalink
Added new papers
Browse files Browse the repository at this point in the history
  • Loading branch information
asteroidhouse committed Sep 10, 2024
1 parent 57f0425 commit 08b8fb5
Show file tree
Hide file tree
Showing 2 changed files with 247 additions and 0 deletions.
30 changes: 30 additions & 0 deletions index.html
Original file line number Diff line number Diff line change
Expand Up @@ -191,6 +191,36 @@
</div>
</div>

<div class="displaycards touchup-date" id="event-hrKHkmLUFk">
<div style="width:80%;margin:auto;">
<a class="small-title" href="paper_pages/hrKHkmLUFk.html">Multi-intention Inverse Q-learning for Interpretable Behavior Representation</a>
</div>
<div class="type_display_name_minus_type"></div>
<div class="author-str">Hao Zhu &middot; Brice De La Crompe &middot; Gabriel Kalweit &middot; Artur Schneider &middot; Maria Kalweit &middot; Ilka Diester &middot; Joschka Boedecker</div>
<div class="author-str higher"></div>
<div class="text-muted touchup-date-div" id="touchup-date-event-hrKHkmLUFk"></div>

<a href="paper_pages/hrKHkmLUFk.html">
<img src="http://img.youtube.com/vi/0u-fboAO6-I/0.jpg" class="social-img-thumb rounded" alt="thumbnail"/>
</a>

<div class="abstract-section">
<div>
<a id="abstract-link-hrKHkmLUFk" class="abstract-link" data-toggle="collapse"
href="#collapse-event-abstract-hrKHkmLUFk" role="button"
aria-expanded="false" aria-controls="collapse-event-abstract-hrKHkmLUFk">
Abstract <i id="caret-hrKHkmLUFk" class="fas fa-caret-right"></i>
</a>
</div>
</div>

<div class="collapse" id="collapse-event-abstract-hrKHkmLUFk">
<div class="abstract-display">
<p>In advancing the understanding of natural decision-making processes, inverse reinforcement learning (IRL) methods have proven instrumental in reconstructing animal's intentions underlying complex behaviors. Given the recent development of a continuous-time multi-intention IRL framework, there has been persistent inquiry into inferring discrete time-varying rewards with IRL. To address this challenge, we introduce the class of hierarchical inverse Q-learning (HIQL) algorithms. Through an unsupervised learning process, HIQL divides expert trajectories into multiple intention segments, and solves the IRL problem independently for each. Applying HIQL to simulated experiments and several real animal behavior datasets, our approach outperforms current benchmarks in behavior prediction and produces interpretable reward functions. Our results suggest that the intention transition dynamics underlying complex decision-making behavior is better modeled by a step function instead of a smoothly varying function. This advancement holds promise for neuroscience and cognitive science, contributing to a deeper understanding of decision-making and uncovering underlying brain mechanisms.</p>
</div>
</div>
</div>

<div class="displaycards touchup-date" id="event-2D36otXvBE">
<div style="width:80%;margin:auto;">
<a class="small-title" href="paper_pages/2D36otXvBE.html">Identifying and Clustering Counter Relationships of Team Compositions in PvP Games for Efficient Balance Analysis</a>
Expand Down
217 changes: 217 additions & 0 deletions paper_pages/hrKHkmLUFk.html
Original file line number Diff line number Diff line change
@@ -0,0 +1,217 @@
<!DOCTYPE html>
<html lang="en" style="scroll-padding-top: 70px;">

<head>

<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0, shrink-to-fit=no">
<link rel="stylesheet"
href="https://fonts.googleapis.com/css?family=Open+Sans:300italic,400italic,600italic,700italic,800italic,400,300,600,700,800">
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Lora:400,700,400italic,700italic">
<link href="https://fonts.googleapis.com/css2?family=Exo:wght@400;700&family=Lato:wght@400;700&display=swap" rel="stylesheet">

<link rel="stylesheet" href="/static/expo/fonts/font-awesome.min.css">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.8.1/css/all.css" integrity="sha384-50oBUHEmvpQ+1lW4y57PTFmhCaXp0ML5d60M1M7uH2+nqUivzIebhndOJK28anvf" crossorigin="anonymous">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap-select@1.13.14/dist/css/bootstrap-select.min.css">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.8.1/css/all.css" integrity="sha384-50oBUHEmvpQ+1lW4y57PTFmhCaXp0ML5d60M1M7uH2+nqUivzIebhndOJK28anvf" crossorigin="anonymous">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap@4.6.2/dist/css/bootstrap.min.css" integrity="sha384-xOolHFLEh07PJGoPkLv1IbcEPTNtaed2xpHsD9ESMhqIYd0nLMwNLD69Npy4HI+N" crossorigin="anonymous">


<script src="https://code.jquery.com/jquery-3.6.1.min.js"
integrity="sha256-o88AwQnZB+VDvE9tvIXrMQaPlFFSUTR+nldQm1LuPXQ=" crossorigin="anonymous"></script>
</script>

<script>
if (typeof jQuery === 'undefined') {
var script = document.createElement('script');
script.type = 'text/javascript';
script.src = "/static/core/js/jquery-3.6.1.min.js";
document.head.appendChild(script);
}
</script>

<script src="https://d3js.org/d3.v5.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/popper.js@1.16.0/dist/umd/popper.min.js" integrity="sha384-Q6E9RHvbIyZFJoft+2mJbHaEWldlvI9IOYy5n3zV9zzTtmI3UksdQRVvoxMfooAo" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/bootstrap@4.6.2/dist/js/bootstrap.bundle.min.js" integrity="sha384-Fy6S3B9q64WdZWQUiU+q4/2Lc9npb8tCaSX9FK7E8HnRr0Jz8D6OP9dO5Vg3Q9ct" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/bootstrap-select@1.13.14/dist/js/bootstrap-select.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/corejs-typeahead/1.3.1/typeahead.bundle.min.js" integrity="sha512-lEb9Vp/rkl9g2E/LdHIMFTqz21+LA79f84gqP75fbimHqVTu6483JG1AwJlWLLQ8ezTehty78fObKupq3HSHPQ==" crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/moment@2.24.0/min/moment.min.js"
integrity="sha256-4iQZ6BVL4qNKlQ27TExEhBN1HFPvAvAMbFavKKosSWQ="
crossorigin="anonymous"></script>
<script src="https://cdn.jsdelivr.net/npm/js-cookie@2/src/js.cookie.min.js"></script>
<script src="/static/core/js/ajax-csrf-snippet.js" type="text/javascript"></script>
<script src="/static/virtual/js/virtual.js"></script>


<link rel="stylesheet" href="../virtual.css">
<link rel="stylesheet" href="/static/virtual/css/calendar.css">
<link rel="stylesheet" href="/static/virtual/css/calendar-ICML.css">
<link rel="stylesheet" href="/static/virtual/css/calendar-ICML2023.css">
<script src='https://slideslive.com/embed_presentation.js'></script>

</head>

<body>
<!-- NAV -->

<!--<nav class="navbar sticky-top navbar-expand-lg navbar-light bg-light mr-auto" id="main-nav">-->
<nav class="navbar sticky-top navbar-expand-lg mr-auto navbar-light" id="main-nav">
<div class="container-fluid">
<a class="navbar-brand" href="../index.html">
<img src="../tmlr_logo.jpeg" height="40px">
Transactions on Machine Learning Research
</a>
<button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarNav"
aria-controls="navbarNav" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div class="collapse navbar-collapse text-right flex-grow-1" id="navbarNav">
<ul class="navbar-nav ml-auto">

<!--
<li class="nav-item dropdown">
<a class="nav-link dropdown-toggle" href="#" id="navbarDropdown" role="button"
data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">
Main Conference
</a>
<div class="dropdown-menu" aria-labelledby="navbarDropdown">
<div class="dropdown-divider"></div>
<a class="dropdown-item" href="/virtual/2023/events/oral">Orals</a>
<div class="dropdown-divider"></div>
<a class="dropdown-item" href="/virtual/2023/events/spotlight">Spotlights</a>
<div class="dropdown-divider"></div>
<a class="dropdown-item" href="/virtual/2023/papers.html">Papers</a>
</div>
</li>
-->

<!--
<li class="nav-item">
<a class="nav-link" href="../index_file.html">All Papers</a>
</li>
-->

<!--
<li class="nav-item">
<a class="nav-link" href="../">Papers with Videos</a>
</li>
-->

<!--
<li class="nav-item">
<a class="nav-link" href="../features_papers.html">Featured Papers</a>
</li>
-->

<!--
<li class="nav-item ">
<a class="nav-link" href="/virtual/2023/search"><i class="fas fa-search"></i> &nbsp;</a>
</li>
-->
</ul>
</div>
</div>
</nav>


<div class="container">
<!-- Title -->
<div class="pp-card m-3" style="" id="bookmark-here">
<div class="card-header">
<!-- <h3 class="text-center">Spotlight</h3> -->

<h2 class="card-title main-title text-center" style="">
Multi-intention Inverse Q-learning for Interpretable Behavior Representation
</h2>

<h3 class="card-subtitle mb-2 text-muted text-center">
Hao Zhu &middot; Brice De La Crompe &middot; Gabriel Kalweit &middot; Artur Schneider &middot; Maria Kalweit &middot; Ilka Diester &middot; Joschka Boedecker
</h3>

<div class="text-center p-3">

<!--
<a class="card-link" data-toggle="collapse" role="button" href="#details">
Abstract
</a>
-->

<div class="schedule-html-detail"></div>

<div>
<span class="nowrap" style="white-space:nowrap">
<a href="https://openreview.net/forum?id=hrKHkmLUFk" class="btn btn-default" title="OpenReview">
<img src="../message-logo2.svg" width="30px" alt="Discussion Logo"/> OpenReview
</span>

<span class="nowrap" style="white-space:nowrap">
<a href="https://openreview.net/pdf?id=hrKHkmLUFk" class="btn btn-default href_PDF" title="Paper PDF">
<img src="../pdf-logo.svg" width="30px" alt="PDF Logo"/> Paper PDF
</a>
</span>

<span class="nowrap" style="white-space:nowrap">
<a href="https://github.com/haozhu10015/hiql" class="btn btn-default href_PDF" title="Code">
<img src="../github-logo.svg" width="30px" alt="Github Logo"/> Code
</a>
</span>
</div>
</div>
<div class=" text-center text-muted text-monospace ">
<div>
</div>
</div>
</div>
</div>


<!-- YouTube Embed -->
<div class="text-center">
<h4 class="text-center">Video</h4>
<iframe width="896" height="504" src="https://www.youtube.com/embed/0u-fboAO6-I" title="Embedded Video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>
</div>

<div class="m-3 text-center">
<h4 class="text-center">Paper PDF</h4>
<a href="https://openreview.net/pdf?id=hrKHkmLUFk"><img src="../paper_thumbnails/hrKHkmLUFk.pdf.jpg" class="border border-dark rounded" alt="Thumbnail of paper pages" /></a>
</div>

<div id="details" class="pp-card m-3">
<div class="card-body">
<p class="card-text">
<div id="abstractExample">
<h4 class="text-center">Abstract</h4>
<p>
In advancing the understanding of natural decision-making processes, inverse reinforcement learning (IRL) methods have proven instrumental in reconstructing animal's intentions underlying complex behaviors. Given the recent development of a continuous-time multi-intention IRL framework, there has been persistent inquiry into inferring discrete time-varying rewards with IRL. To address this challenge, we introduce the class of hierarchical inverse Q-learning (HIQL) algorithms. Through an unsupervised learning process, HIQL divides expert trajectories into multiple intention segments, and solves the IRL problem independently for each. Applying HIQL to simulated experiments and several real animal behavior datasets, our approach outperforms current benchmarks in behavior prediction and produces interpretable reward functions. Our results suggest that the intention transition dynamics underlying complex decision-making behavior is better modeled by a step function instead of a smoothly varying function. This advancement holds promise for neuroscience and cognitive science, contributing to a deeper understanding of decision-making and uncovering underlying brain mechanisms.
</p>
</div>
</p>

</div>
</div>
</div>


<script>
var show_abstract = false;
</script>


<script type="text/x-mathjax-config">
MathJax.Hub.Config({
"tex2jax": {
"inlineMath": [["$","$"], ["\(","\)"]],
"displayMath": [["\[","\]"]],
"processEscapes": true
}
}
);
var jq2 = $;
</script>

<script type="text/javascript" async
src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-MML-AM_CHTML">
</script>

</body>
</html>

0 comments on commit 08b8fb5

Please sign in to comment.