Skip to content

JonathanGzzBen/weaviate

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Weaviate Weaviate logo

The AI-first search engine

Build Status Go Report Card Coverage Status Slack Newsletter

Demo of Weaviate

Weaviate GraphQL demo on news article dataset containing: Transformers module, GraphQL usage, semantic search, _additional{} features, Q&A, and Aggregate{} function. You can the demo on this dataset in the GUI here: semantic search, Q&A, Aggregate.

Description

Weaviate is a low-latency vector search engine with out-of-the-box support for different media types (text, images, etc.). It offers Semantic Search, Question-Answer-Extraction, Classification, Customizable Models (PyTorch/TensorFlow/Keras), and more. Built from scratch in Go, Weaviate stores both objects and vectors, allowing for combining vector search with structured filtering with the fault-tolerance of a cloud-native database, all accessible through GraphQL, REST, and various language clients.

Features

Weaviate makes it easy to use state-of-the-art AI models while giving you the scalability, ease of use, safety and cost-effectiveness of a purpose-built vector database. Most notably:

  • Fast queries
    Weaviate typically performs a 10-NN neighbor search out of millions of objects in considerably less than 100ms.

  • Any media type with Weaviate Modules
    Use State-of-the-Art AI model inference (e.g. Transformers) for Text, Images, etc. at search and query time to let Weaviate manage the process of vectorizing your data for your - or import your own vectors.

  • Combine vector and scalar search
    Weaviate allows for efficient combined vector and scalar searches, e.g “articles related to the COVID 19 pandemic published within the past 7 days”. Weaviate stores both your objects and the vectors and make sure the retrieval of both is always efficient. There is no need for a third party object storage.

  • Real-time and persistent
    Weaviate let’s you search through your data even if it’s currently being imported or updated. In addition, every write is written to a Write-Ahead-Log (WAL) for immediately persisted writes - even when a crash occurs.

  • Horizontal Scalability
    Scale Weaviate for your exact needs, e.g. High-Availability, maximum ingestion, largest possible dataset size, maximum queries per second, etc. (Currently under development, ETA Fall 2021)

  • Cost-Effectiveness
    Very large datasets do not need to be kept entirely in memory in Weaviate. At the same time available memory can be used to increase the speed of queries. This allows for a conscious speed/cost trade-off to suit every use case.

  • Graph-like connections between objects
    Make arbitrary connections between your objects in a graph-like fashion to resemble real-life connections between your data points. Traverse those connections using GraphQL.

Documentation

You can find detailed documentation in the developers section of our website or directly go to one of the docs using the links in the list below.

Additional material

Video

Reading

Examples

You can find code examples here

Support

Contributing

About

Weaviate is a cloud-native, modular, real-time vector search engine

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Go 99.3%
  • Other 0.7%