A Collection of my reimplemented GAN architectures which are my most favorite machine learning models.
- Vanila GAN
- Wasserstein GAN with Gradient Penalty
- StyleGAN without progressive training
Those GAN models were trained using soumik12345's dataset and Danbooru dataset processed by GWERN
soumik12345's dataset: https://www.kaggle.com/soumikrakshit/anime-faces
Danbooru dataset from GWERN: https://www.gwern.net/TWDNE
Btw, I also like other GAN but not yet know how to implement xD
Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., … Bengio, Y. (2014). Generative Adversarial Networks. doi:10.48550/ARXIV.1406.2661
Arjovsky, M., Chintala, S. & Bottou, L.. (2017). Wasserstein Generative Adversarial Networks. Proceedings of the 34th International Conference on Machine Learning, in Proceedings of Machine Learning Research 70:214-223 Available from https://proceedings.mlr.press/v70/arjovsky17a.html.
Karras, T., Laine, S., & Aila, T. (2018). A Style-Based Generator Architecture for Generative Adversarial Networks. doi:10.48550/ARXIV.1812.04948
Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., & Aila, T. (2019). Analyzing and Improving the Image Quality of StyleGAN. doi:10.48550/ARXIV.1912.04958