Skip to content

Commit

Permalink
Add docstrings (#89)
Browse files Browse the repository at this point in the history
  • Loading branch information
LSYS committed Jan 21, 2024
1 parent 4d8396a commit f2d8912
Showing 1 changed file with 154 additions and 15 deletions.
169 changes: 154 additions & 15 deletions forestplot/mplot.py
Original file line number Diff line number Diff line change
Expand Up @@ -107,27 +107,67 @@ def mforestplot(
The name of the column representing the lower limit of the confidence intervals.
hl : Optional[str]
The name of the column representing the upper limit of the confidence intervals.
[Other parameters]
...
groupvar: Optional[str] = None
The name of the column used for grouping the variables. If specified, it allows the plot to visually
distinguish between different groups of variables.
group_order: Optional[Union[list, tuple]] = None
Specifies the order in which groups (as defined by `groupvar`) should be displayed in the plot.
If None, the groups are displayed in the order they appear in the DataFrame.
logscale: bool = False
If True, the x-axis will be log-scaled. Useful for variables that span several orders of magnitude.
annote: Optional[Union[Sequence[str], None]] = None
A list of column names in the DataFrame that contain additional annotations for each variable.
annoteheaders: Optional[Union[Sequence[str], None]] = None
Headers for the annotation columns. If None, the column names specified in `annote` are used as headers.
rightannote: Optional[Union[Sequence[str], None]] = None
A list of column names for annotations that should be placed on the right side of the plot.
right_annoteheaders: Optional[Union[Sequence[str], None]] = None
Headers for the right-side annotation columns.
pval: Optional[str] = None
The name of the column containing p-values for each estimate. Used for displaying statistical significance.
capitalize: Optional[str] = None
Column name for which the text should be capitalized.
starpval: bool = True
If True, display stars (*) next to estimates to indicate statistical significance based on p-values.
sort: bool = False
If True, the variables will be sorted based on the `sortby` parameter.
sortby: Optional[str] = None
Column name to sort the variables by. Only relevant if `sort` is True.
flush: bool = True
If True, aligns all the estimates along a vertical line for better visual comparison.
decimal_precision: int = 2
The number of decimal places for numeric values displayed in the plot.
figsize: Union[Tuple, List] = (4, 8)
Size of the plot specified as (width, height) in inches.
xticks: Optional[Union[list, range]] = None
Custom x-axis tick values. If None, Matplotlib's default ticks are used.
ylabel: Optional[str] = None
Label for the y-axis. If None, no label is displayed.
xlabel: Optional[str] = None
Label for the x-axis. If None, no label is displayed.
yticker2: Optional[str] = None
Secondary y-axis tick labels, if applicable.
color_alt_rows: bool = False
If True, alternate rows will have different background colors for better readability.
return_df: bool = False
If True, returns the processed DataFrame along with the Axes object.
preprocess: bool = True
If True, performs preprocessing on the DataFrame before plotting.
table: bool = False
If True, displays a table at the bottom of the plot with variable names and their corresponding estimates.
legend: bool = True
If True, displays a legend for the models or groups.
xlim: Optional[Union[Tuple, List]] = None
Custom limits for the x-axis. Specified as (xmin, xmax).
**kwargs: Any
Additional keyword arguments to pass to Matplotlib plotting functions.
Returns
-------
Tuple
A tuple containing a modified DataFrame (if return_df is True) and the matplotlib Axes object
with the forest plot.
Examples
--------
>>> df = pd.DataFrame({
... 'model': ['model1', 'model2'],
... 'estimate': [1.5, 2.0],
... 'll': [1.0, 1.7],
... 'hl': [2.0, 2.3],
... 'varlabel': ['Variable 1', 'Variable 2']
... })
>>> modified_df, ax = mforestplot(df, 'estimate', 'varlabel', 'model')
>>> plt.show()
Notes
-----
- The function is highly customizable with several optional parameters to adjust the appearance and functionality
Expand Down Expand Up @@ -229,7 +269,45 @@ def _mpreprocess_dataframe(
**kwargs: Any,
) -> pd.core.frame.DataFrame:
"""
Preprocess the dataframe to be ready for plotting.
Preprocess the dataframe to be ready for plotting in the `mforestplot` function.
Parameters
----------
dataframe : pd.core.frame.DataFrame
The DataFrame containing the data to be plotted.
estimate : str
The name of the column in the DataFrame that contains the estimate values.
varlabel : str
The name of the column used for variable labels on the y-axis.
model_col : str
The name of the column that categorizes data into different models or groups.
models : Optional[Union[Sequence[str], None]]
The list of models to include in the plot. If None, all models in model_col are used.
ll : Optional[str]
The name of the column representing the lower limit of the confidence intervals.
hl : Optional[str]
The name of the column representing the upper limit of the confidence intervals.
groupvar : Optional[str]
The name of the column used for grouping the variables. If provided, the DataFrame will be sorted and/or
grouped based on this column.
group_order : Optional[Union[list, tuple]]
The order in which to display the groups defined by `groupvar`. This affects the sorting of the DataFrame.
annote : Optional[Union[Sequence[str], None]]
A list of column names in the DataFrame that contain additional annotations for each variable.
annoteheaders : Optional[Union[Sequence[str], None]]
Headers for the annotation columns. If None, the column names specified in `annote` are used as headers.
rightannote : Optional[Union[Sequence[str], None]]
A list of column names for annotations that should be placed on the right side of the plot.
right_annoteheaders : Optional[Union[Sequence[str], None]]
Headers for the right-side annotation columns.
capitalize : Optional[str]
Column name for which the text should be capitalized.
flush : bool
If True, aligns all the estimates along a vertical line for better visual comparison.
decimal_precision : int
The number of decimal places for numeric values in the DataFrame.
**kwargs : Any
Additional keyword arguments that might be used in other preprocessing steps.
Returns
-------
Expand Down Expand Up @@ -317,6 +395,67 @@ def _make_mforestplot(
xlim: Optional[Union[Tuple, List]] = None,
**kwargs: Any,
) -> Axes:
"""
Constructs a forest plot from a preprocessed DataFrame.
Parameters
----------
dataframe : pd.core.frame.DataFrame
The DataFrame containing the data to be plotted.
yticklabel : str
The name of the column used for y-axis tick labels.
estimate : str
The name of the column in the DataFrame that contains the estimate values.
model_col : str
The name of the column that categorizes data into different models or groups.
models : Optional[Union[Sequence[str], None]]
The list of models to include in the plot. If None, all models in model_col are used.
modellabels : Optional[Union[Sequence[str], None]]
Labels for the models, used in the plot legend. If None, model names are used as labels.
groupvar : str
The name of the column used for grouping the variables.
xticks : Optional[Union[list, range]]
Custom x-axis tick values. If None, Matplotlib's default ticks are used.
ll : str
The name of the column representing the lower limit of the confidence intervals.
hl : str
The name of the column representing the upper limit of the confidence intervals.
logscale : bool
If True, the x-axis will be log-scaled.
flush : bool
If True, aligns all the estimates along a vertical line for better visual comparison.
annoteheaders : Optional[Union[Sequence[str], None]]
Headers for the annotation columns.
rightannote : Optional[Union[Sequence[str], None]]
A list of column names for annotations to be placed on the right side of the plot.
right_annoteheaders : Optional[Union[Sequence[str], None]]
Headers for the right-side annotation columns.
ylabel : str
Label for the y-axis.
xlabel : str
Label for the x-axis.
yticker2 : Optional[str]
Secondary y-axis tick labels, if applicable.
figsize : Union[Tuple, List]
Size of the plot specified as (width, height) in inches.
despine : bool
If True, removes the top and right spines from the plot.
color_alt_rows : bool
If True, alternate rows will have different background colors for better readability.
table : bool
If True, displays a table at the bottom of the plot with variable names and their corresponding estimates.
legend : bool
If True, displays a legend for the models or groups.
xlim : Optional[Union[Tuple, List]]
Custom limits for the x-axis. Specified as (xmin, xmax).
**kwargs : Any
Additional keyword arguments to pass to plotting functions.
Returns
-------
Axes
A Matplotlib Axes object containing the forest plot.
"""
if models is None:
models = dataframe[model_col].dropna().unique()
if modellabels is None:
Expand Down

0 comments on commit f2d8912

Please sign in to comment.