This project is a custom trained network for my Deep Learning in Med Imaging Course at Vanderbilt
Layer (type) Output Shape Param #
Conv2d-1 [-1, 64, 256, 256] 1,792
ReLU-2 [-1, 64, 256, 256] 0
MaxPool2d-3 [-1, 64, 128, 128] 0
Conv2d-4 [-1, 128, 128, 128] 73,856
ReLU-5 [-1, 128, 128, 128] 0
MaxPool2d-6 [-1, 128, 64, 64] 0
Conv2d-7 [-1, 256, 64, 64] 295,168
ReLU-8 [-1, 256, 64, 64] 0
Conv2d-9 [-1, 256, 64, 64] 590,080
ReLU-10 [-1, 256, 64, 64] 0
MaxPool2d-11 [-1, 256, 32, 32] 0
Conv2d-12 [-1, 512, 32, 32] 1,180,160
ReLU-13 [-1, 512, 32, 32] 0
Conv2d-14 [-1, 512, 32, 32] 2,359,808
ReLU-15 [-1, 512, 32, 32] 0
MaxPool2d-16 [-1, 512, 16, 16] 0
Conv2d-17 [-1, 512, 16, 16] 2,359,808
ReLU-18 [-1, 512, 16, 16] 0
Conv2d-19 [-1, 512, 16, 16] 2,359,808
ReLU-20 [-1, 512, 16, 16] 0
MaxPool2d-21 [-1, 512, 8, 8] 0
AdaptiveAvgPool2d-22 [-1, 512, 7, 7] 0
Linear-23 [-1, 64] 1,605,696
Sigmoid-24 [-1, 64] 0
Dropout-25 [-1, 64] 0
Linear-26 [-1, 2] 130
The implementation deals with localizing a single cell phone in images.
It is built in a VGG model style with increasing convolutional layers and decreasing dimensions.