Fengyuan Shi,
Weilin Huang,
Limin Wang
conda create -n prvg python=3.10
conda activate prvg
bash install.txt
Please download the C3D features from the official website of ActivityNet: Official C3D Feature.
Please download the C3D features for training set and test set of TACoS dataset.
# ActivityNet Captions
export CUDA_VISIBLE_DEVICES=0
python eval.py --verbose --cfg ../experiments/activitynet/acnet_test.yaml
# TACoS
export CUDA_VISIBLE_DEVICES=1
python eval.py --verbose --cfg ../experiments/tacos/tacos_test.yaml
# ActivityNet Captions
export CUDA_VISIBLE_DEVICES=0
python main.py --verbose --cfg ../experiments/activitynet/acnet.yaml
# TACoS
export CUDA_VISIBLE_DEVICES=1
python main.py --verbose --cfg ../experiments/tacos/tacos.yaml
If you make use of our work, please cite our paper.
@article{shi2024end,
title={End-to-end dense video grounding via parallel regression},
author={Shi, Fengyuan and Huang, Weilin and Wang, Limin},
journal={Computer Vision and Image Understanding},
volume={242},
pages={103980},
year={2024},
publisher={Elsevier}
}
This project is built upon DepNet. Thanks for their contributions!