This repository has the code to assess T1-weighted neuroimages quality. The assessment verifies the presence of motion-artifacts on these images. The result is a probability of artifact presence on T1w volume analyzed.
Having a GPU is not necessary, but will speed up training time. Prediction time is around 14 sec
To run this code, you need to have the following libraries installed:
python3
tensorflow >= 2.0
matplotlib
nibabel
pydicom
numpy
scikit-image
h5py
The complete software list is reported in requirements.txt
python3 MoCIDet.py -data_path path/to/folder/containing/volumes -data_type 'image_type' -save_file 'name_to_save_predictions'
arguments:
data_path is the path to the directory where the T1w acquisitions are stored
data_type is the acquisition type:
nifti
dicom - volumetric dicom file (one file)
multi-dicom - volumetric multiple dicom files (path to the directory root)
dicom-2D - multiple 2D dicom files (path to the directory root)
save_file is the txt file to save the motion-presence probabilities
display to display the partial results of the predictions
save-slice to save a sample of a slice presenting the minimum and the maximum probability
[1]
python MoCIDet.py -data_path test_anon/nifti/ -data_type nifti -save_file test_nifti.txt -display -save_slice
test_anon/nifti/ABIDE_50002_MRI_MP-RAGE_br_raw_20120830172854796_S164623_I328631.nii 1.0
Time: 8.021493673324585
test_anon/nifti/ABIDE_50003_MRI_MP-RAGE_br_raw_20120830155445855_S164416_I328410.nii 1.0
Time: 7.908209323883057
test_anon/nifti/sub-10159_T1w.nii.gz 1.0
Time: 9.28245997428894
test_anon/nifti/sub-10206_T1w.nii.gz 0.05185185185185185
Time: 8.439939022064209
[['test_anon/nifti/ABIDE_50002_MRI_MP-RAGE_br_raw_20120830172854796_S164623_I328631.nii' '1.0']
['test_anon/nifti/ABIDE_50003_MRI_MP-RAGE_br_raw_20120830155445855_S164416_I328410.nii' '1.0']
['test_anon/nifti/sub-10159_T1w.nii.gz' '1.0']
['test_anon/nifti/sub-10206_T1w.nii.gz' '0.05185185185185185']]
Slices saved:
If you find this repository useful, please consider giving a star ⭐ and citation 🦖:
@INPROCEEDINGS{8423948,
author={Fantini, Irene and Rittner, Leticia and Yasuda, Clarissa and Lotufo, Roberto},
booktitle={2018 International Workshop on Pattern Recognition in Neuroimaging (PRNI)},
title={Automatic detection of motion artifacts on MRI using Deep CNN},
year={2018},
volume={},
number={},
pages={1-4},
doi={10.1109/PRNI.2018.8423948}}