Implementation of "A Lightweight CNN and Joint Shape-Joint Space (JS2) Descriptor for Radiological Osteoarthritis Detection", MIUA 2020 paper.
https://arxiv.org/abs/2005.11715
Multicenter Osteoarthritis Study (MOST): http://most.ucsf.edu/
The Osteoarthritis Initiative (OAI): https://nda.nih.gov/oai/
-
Obtain OAI and MOST Data from the links above. We can not distribute the data.
-
Extract Landmarks using BoneFinder(BF) software: http://bone-finder.com/.
-
Localize both left and right knee joints using BF landmarks.
-
Save each joint and associated list of landmark points in a seperate
.npy
file (patientID_SIDE.npy, i.e. "9000099_L.npy"). -
Create a conda environment as follows:
conda env create -f env.yml
-
Prepare medial tibia crops and JSW measurements using
prepare_crops.py
. This will save marginal medial tibia ROI and JSW measurements (minJSW, fJSW, JS2, jointsize) as.npy
files.
Select model according to models defined in models.py
python main.py --model combined
Please cite:
@article{bayramoglu2020js2,
title={A Lightweight CNN and Joint Shape-Joint Space (JS2) Descriptor for Radiological Osteoarthritis Detection},
author={Bayramoglu, Neslihan and Miika, Nieminen and Saarakkala, Simo},
journal={MIUA 2020, arXiv preprint },
year={2020}
}```