Releases: ML4GW/ml4gw
Releases · ML4GW/ml4gw
v0.5.1
v0.5.0
What's Changed
- Added KAGRA as detector #132
- Added
IMRPhenomP
implementation #138 SineGaussian
returns polarizations indtype
of passed parameters #139- Refactored
TaylorF2
andIMRPhenomD
intotorch.nn.Modules
#137 - Added dimensionality check to
GroupNorm1D
#134
Bug Fixes
Full Changelog: v0.4.2...v0.5.0
v0.4.2
v0.4.1
v0.4.0
v0.3.0
Feature additions
augmentations
module that addsSignalInverter
andSignalReverser
modulesdataloading.ChunkedTimeSeriesDataset
replacesdataloading.ChunkLoader
dataloading.Hdf5TimeSeriesDataset
for loading directly fromhdf5
files on diskShiftedPearsonCorrelation
transform- New
nn
submodule that contains:autoencoder
library for building arbitrary autoencoder structuresstreaming
library that containsSnapshotter
andOnlineAverager
modules for IaaS deployment
- Torch implementations of TaylorF2 and PhenomD waveforms
Deprecations
dataloading..ChunkLoader
removed in favor ofdataloading.ChunkedTimeSeriesDataset
v0.2.0
Feature additions
waveforms
module for generating gravitational wave polarizations from source parameterswhiten
function andWhiten
module for performing time-domain whitening using arbitrary background dataChunkedDataloader
for loading time domain strain data from disk on-the-fly during training- Modularizing
RandomWaveformInjector
into more functional submodules:gw.compute_observed_strain
wrapped intoWaveformProjector
moduleSnrRescaler
module for rescaling waveform amplitudes to achieve target SNR values
InterferometerGeometry
module encoding interferometer properties locally without having to rely ongwpy
Deprecations
spectral.normalize_psd
removed in favor of enforcing use of torch Tensors during transform fittinggwpy
dependency removed