This repository is the official implementation of Neural posterior estimation for exoplanetary atmospheric retrieval.
-
Clone the repository.
git clone https://github.com/francois-rozet/sbi-ear cd sbi-ear
-
Download and extract the input data of petitRADTRANS.
wget https://keeper.mpdl.mpg.de/f/78b3c66857924b5aacdd/?dl=1 -O input_data.tar.gz tar -xzf input_data.tar.gz
-
Create and activate the
conda
environment.conda env create -f environment.yml conda activate ear
-
Rebin the opacities to a lower resolution.
python rebin.py
Running the experiment scripts requires a Slurm cluster.
-
Generate the training, validation and testing data.
python generate.py
-
When the data generation is finished, launch the training of the estimator.
python train.py
This step requires to login to Weights & Biases.
-
Run the evaluation notebook.
jupyter notebook eval.ipynb
It is necessary to modify the
runpath
according to the run name.