Skip to content

Maptime030/R_workshop

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MAPTIME030 / geodata in R

author: GreenStat - Peter van Horssen date: '12 maart, 2018' width: 2000 height: 1200

Introduction - Who am I

Peter van Horssen [www.greenstat.nl] ( https:www.greenstat.nl)

background in physical geography & ecology
experience in data analysis/statistics/mapping in ecological studies

  • animal tagging studies
  • impact assessment studies
  • data visualisation

analysis : statistics, GIS, graphs, maps

Introduction - What is the Plan ?

  • Intro
  • geo-data in R
  • Basics:
    • convert non-spatial tot spatial data in R

do stuff yourself

.... coffee break ....

  • Analysis:
    • reading and writing
    • some examples

do more stuff yourself

geo-data in R

Why GIS in R ?
or maybe start with : why R?

  • R is a usefull big box with all tools needed for data-analysis

  • R is not better than other tools

  • R does not make your data-analysis problem easier/simple !

  • creation of reproducible workflow

  • scripting and documentation of workflow

  • Recently a boost in the available 'spatial' tools (based on 'simple features')

All spatial analysis functionality (and more!) is available in R, plotting and layout for maps is at a basic level.

geo-data in R

what is geo-data?

  • not all data is geodata
  • formats (xlsx,csv, shp,gml,kml,.....)
  • meta-data (map projection, units)

geo-data in R

'simple features' is a data model with basic features for all spatial data:

This standard is 'under the hood' used in nearly all GIS packages (QGis, Esri, PostGIS, ..)

it also exports all OGC operations:
st_area, st_buffer, st_length, st_transform,....

read/write through GDAL


geo-data in R

  • why do we need this ?
  • who needs this ?

r&d for small to midsize (in terms of data) analysis

very usefull for data-exploration (spatial, temporal, attributes)

keep the workflow on one platform

analysis in R, fancy (web)mapping somewhere else


geo-data in R

Assume user with basic knowledge of R

data.frame, x[] , str()

User with workable knowledge of spatial analysis and map projections

This presentation provides 'pointers' only

geo-data in R

Software: R-core

packages :

Please download this before the meetup, R lives @ cran : https://cran.r-project.org/bin/windows/base/

Package are installed when R is running, choose 'Package|Install Packages' in the topbar, choose a cloudsource and select package name

Run scripts in plain R of RStudio (newest version)

Non spatial > spatial data

test set simple example: points with coordinates

# script voor test df
n=10^3

df <- data.frame(
  ID=c(1:n),
  var2=runif(n),
  var1=sample(LETTERS[1:4], n, replace=TRUE),
  dates=sample(seq(as.Date('2016/01/01'), as.Date('2017/01/01'), by="day"), n, replace=TRUE),
  X  = runif(n, min= 3.36,max= 7.23), # why this min/max?
  Y  = runif(n, min=50.72,max=53.55)
  )

head(df)
  ID      var2 var1      dates        X        Y
1  1 0.1280419    D 2016-02-01 5.429107 51.72390
2  2 0.9780423    C 2016-01-09 6.033566 51.03359
3  3 0.1913305    C 2016-06-02 3.777492 51.02033
4  4 0.1235640    B 2016-10-28 4.201303 51.94631
5  5 0.8046380    B 2016-12-19 7.092073 51.80091
6  6 0.4275470    C 2016-05-05 5.222120 53.34998

Non spatial > spatial data

library(sf)

df.sf <- st_as_sf(df,coords=c('X','Y'))

df.sf
Simple feature collection with 1000 features and 4 fields
geometry type:  POINT
dimension:      XY
bbox:           xmin: 3.364658 ymin: 50.72375 xmax: 7.227531 ymax: 53.5451
epsg (SRID):    NA
proj4string:    NA
First 10 features:
   ID       var2 var1      dates                  geometry
1   1 0.12804193    D 2016-02-01  POINT (5.429107 51.7239)
2   2 0.97804231    C 2016-01-09 POINT (6.033566 51.03359)
3   3 0.19133054    C 2016-06-02 POINT (3.777492 51.02033)
4   4 0.12356401    B 2016-10-28 POINT (4.201303 51.94631)
5   5 0.80463805    B 2016-12-19 POINT (7.092073 51.80091)
6   6 0.42754700    C 2016-05-05  POINT (5.22212 53.34998)
7   7 0.36428749    C 2016-08-14 POINT (5.875715 51.43441)
8   8 0.78050745    D 2016-10-04 POINT (3.669354 53.06731)
9   9 0.04795271    D 2016-06-19  POINT (5.154448 50.9267)
10 10 0.58685661    A 2016-02-28 POINT (6.345324 50.74155)
#st_as_sf(df,coords=c('X','Y','var2'), dim="XYZ")
#head(df.sf,n=2)
#head(df,n=2)

Non spatial > spatial data

mapprojection - metadata

in sf map projections through CRS (Coordinate Reference System) at http://spatialreference.org/


Non spatial > spatial data

df.sf <- st_as_sf(df,coords=c('X','Y'), crs=4326)

df.sf
Simple feature collection with 1000 features and 4 fields
geometry type:  POINT
dimension:      XY
bbox:           xmin: 3.364658 ymin: 50.72375 xmax: 7.227531 ymax: 53.5451
epsg (SRID):    4326
proj4string:    +proj=longlat +datum=WGS84 +no_defs
First 10 features:
   ID       var2 var1      dates                  geometry
1   1 0.12804193    D 2016-02-01  POINT (5.429107 51.7239)
2   2 0.97804231    C 2016-01-09 POINT (6.033566 51.03359)
3   3 0.19133054    C 2016-06-02 POINT (3.777492 51.02033)
4   4 0.12356401    B 2016-10-28 POINT (4.201303 51.94631)
5   5 0.80463805    B 2016-12-19 POINT (7.092073 51.80091)
6   6 0.42754700    C 2016-05-05  POINT (5.22212 53.34998)
7   7 0.36428749    C 2016-08-14 POINT (5.875715 51.43441)
8   8 0.78050745    D 2016-10-04 POINT (3.669354 53.06731)
9   9 0.04795271    D 2016-06-19  POINT (5.154448 50.9267)
10 10 0.58685661    A 2016-02-28 POINT (6.345324 50.74155)
# st_transform(df.sf, 28992)
# st_crs(df.sf)
# st_set_csr(df.sf)  # error !
# st_set_crs(df.sf, 28992 ) # is this oke ?

Non spatial > spatial data

str(df.sf) # str : shows structure of object
Classes 'sf' and 'data.frame':	1000 obs. of  5 variables:
 $ ID      : int  1 2 3 4 5 6 7 8 9 10 ...
 $ var2    : num  0.128 0.978 0.191 0.124 0.805 ...
 $ var1    : Factor w/ 4 levels "A","B","C","D": 4 3 3 2 2 3 3 4 4 1 ...
 $ dates   : Date, format: "2016-02-01" "2016-01-09" ...
 $ geometry:sfc_POINT of length 1000; first list element: Classes 'XY', 'POINT', 'sfg'  num [1:2] 5.43 51.72
 - attr(*, "sf_column")= chr "geometry"
 - attr(*, "agr")= Factor w/ 3 levels "constant","aggregate",..: NA NA NA NA
  ..- attr(*, "names")= chr  "ID" "var2" "var1" "dates"
str(df)
'data.frame':	1000 obs. of  6 variables:
 $ ID   : int  1 2 3 4 5 6 7 8 9 10 ...
 $ var2 : num  0.128 0.978 0.191 0.124 0.805 ...
 $ var1 : Factor w/ 4 levels "A","B","C","D": 4 3 3 2 2 3 3 4 4 1 ...
 $ dates: Date, format: "2016-02-01" "2016-01-09" ...
 $ X    : num  5.43 6.03 3.78 4.2 7.09 ...
 $ Y    : num  51.7 51 51 51.9 51.8 ...

objects keep 'dataframe' class

Non spatial > spatial data

df.sf[1:3,] # first three rows of dataframe
Simple feature collection with 3 features and 4 fields
geometry type:  POINT
dimension:      XY
bbox:           xmin: 3.777492 ymin: 51.02033 xmax: 6.033566 ymax: 51.7239
epsg (SRID):    4326
proj4string:    +proj=longlat +datum=WGS84 +no_defs
  ID      var2 var1      dates                  geometry
1  1 0.1280419    D 2016-02-01  POINT (5.429107 51.7239)
2  2 0.9780423    C 2016-01-09 POINT (6.033566 51.03359)
3  3 0.1913305    C 2016-06-02 POINT (3.777492 51.02033)
#df.sf[,3]
df.sf[1:3,2:3] # first three rows and column 2 and 3 only
Simple feature collection with 3 features and 2 fields
geometry type:  POINT
dimension:      XY
bbox:           xmin: 3.777492 ymin: 51.02033 xmax: 6.033566 ymax: 51.7239
epsg (SRID):    4326
proj4string:    +proj=longlat +datum=WGS84 +no_defs
       var2 var1                  geometry
1 0.1280419    D  POINT (5.429107 51.7239)
2 0.9780423    C POINT (6.033566 51.03359)
3 0.1913305    C POINT (3.777492 51.02033)

Non spatial > spatial data

library(mapview) # R wrapper for leaflet .....


#mapview(df.sf)
mapview(df.sf,zcol="var1", legend=TRUE)


#library(tmap)
#tmap_mode("view")
#tm_shape(df.sf) + tm_dots(col="black", size=.1)

Non spatial > data exploration tidy-style

www.tidyverse.org/packages/

use of 'pipes' : '%>%'

select : select column
filter : filter rows
mutate : add column (and mutate value)
summarize : aggregate

library(tidyverse)
df <- df %>% mutate(maand=format.Date(dates, "%m"))
df %>% head()
  ID      var2 var1      dates        X        Y maand
1  1 0.1280419    D 2016-02-01 5.429107 51.72390    02
2  2 0.9780423    C 2016-01-09 6.033566 51.03359    01
3  3 0.1913305    C 2016-06-02 3.777492 51.02033    06
4  4 0.1235640    B 2016-10-28 4.201303 51.94631    10
5  5 0.8046380    B 2016-12-19 7.092073 51.80091    12
6  6 0.4275470    C 2016-05-05 5.222120 53.34998    05
df %>% filter(var1=="B" ) %>% head()
  ID      var2 var1      dates        X        Y maand
1  4 0.1235640    B 2016-10-28 4.201303 51.94631    10
2  5 0.8046380    B 2016-12-19 7.092073 51.80091    12
3 14 0.3911026    B 2016-08-27 6.344933 51.30927    08
4 17 0.7717081    B 2016-01-29 4.740575 51.08011    01
5 20 0.4170263    B 2016-12-01 3.473820 52.09161    12
6 24 0.5422442    B 2016-01-24 6.318316 51.44538    01

Non spatial > data exploration tidy-style

df %>% 
ggplot(aes(x=dates,y=ID)) +
  geom_point() + 
  #geom_line() +
  theme(text = element_text(size = 25))

plot of chunk unnamed-chunk-9


df %>%
  ggplot(aes(x=maand,y=var2, group=maand)) +
  geom_boxplot()+ 
  theme(text = element_text(size = 25))

plot of chunk unnamed-chunk-10

Non spatial > data exploration tidy-style

use data.frame ...

# conditional plot
df %>% ggplot(aes(var1,var2)) +
  geom_boxplot() +
  facet_wrap(~maand) +  
  theme(text = element_text(size = 25))

plot of chunk unnamed-chunk-11


remember the classes of a sf object : 'sf' and 'data.frame'?

df.sf %>%
  mutate(maand=format.Date(dates, "%m")) %>% 
  ggplot(aes(var1,var2)) +
  geom_boxplot() +
  facet_wrap(~maand) +            
  theme(text = element_text(size = 25))

plot of chunk unnamed-chunk-12

spatial > data exploration tidy-style

library(mapview) # R wrapper for leaflet .....

df.sf %>%
  mutate(maand=format.Date(dates, "%m")) %>%
  filter((var1=="B") %>% 
  mapview(zcol="maand", legend=TRUE)

   
  
# alternative ....

#library(tmap)
#tmap_mode("view")
#df.sf %>% tm_shape() + tm_dots(col="black", size=.1)

geo-data in R : break

do stuff yourself ....

...coffee break...

geo-data in R : import/export external GIS-formats

maps downloaded from web https://www.cbs.nl/nl-nl/dossier/nederland-regionaal/geografische%20data/wijk-en-buurtkaart-2017 CBS : buurt_2017.zip

  • kaart met wijken, buurten en gemeenten in NL
  • uitpakken: shape files
list.files("../dataUtrecht/buurt_2017")
 [1] "buurt_2017.cpg"     "buurt_2017.dbf"     "buurt_2017.prj"    
 [4] "buurt_2017.shp"     "buurt_2017.shp.xml" "buurt_2017.shx"    
 [7] "gem_2017.cpg"       "gem_2017.dbf"       "gem_2017.prj"      
[10] "gem_2017.shp"       "gem_2017.shp.xml"   "gem_2017.shx"      
[13] "wijk_2017.cpg"      "wijk_2017.dbf"      "wijk_2017.prj"     
[16] "wijk_2017.shp"      "wijk_2017.shp.xml"  "wijk_2017.shx"     

Utrecht : bomenkaart.zip https://utrecht.dataplatform.nl/dataset/afa19ac8-e63e-4e27-a42e-3bb4f9082c59

  • kaart met bomen in utrecht
  • uitpakken : shapefile met bomen in Utrecht
list.files("../dataUtrecht/bomenkaart")
[1] "Bomen_GISIB_ArcGISonline.dbf" "Bomen_GISIB_ArcGISonline.prj"
[3] "Bomen_GISIB_ArcGISonline.sbn" "Bomen_GISIB_ArcGISonline.sbx"
[5] "Bomen_GISIB_ArcGISonline.shp" "Bomen_GISIB_ArcGISonline.shx"

geo-data in R : data

library(sf)
library(tidyverse)
buurt.sf <- st_read("../dataUtrecht/buurt_2017/buurt_2017.shp")
Reading layer `buurt_2017' from data source `L:\GreenStat\projecten\2017-X03 maptime 030 R GIS\dataUtrecht\buurt_2017\buurt_2017.shp' using driver `ESRI Shapefile'
Simple feature collection with 13308 features and 39 fields
geometry type:  MULTIPOLYGON
dimension:      XY
bbox:           xmin: 10425.16 ymin: 306846.2 xmax: 278026.1 ymax: 621876.3
epsg (SRID):    NA
proj4string:    +proj=sterea +lat_0=52.15616055555555 +lon_0=5.38763888888889 +k=0.9999079 +x_0=155000 +y_0=463000 +ellps=bessel +units=m +no_defs
#buurt.sf %>% head(n=3)

geo-data in R : data

library(sf)
library(tidyverse)

buurt.sf %>% str() # show structure of object
Classes 'sf' and 'data.frame':	13308 obs. of  40 variables:
 $ BU_CODE   : Factor w/ 13308 levels "BU00030000","BU00030001",..: 1 2 3 4 5 6 7 8 9 10 ...
 $ BU_NAAM   : Factor w/ 12251 levels "'n Oaln Diek",..: 372 374 373 9715 10782 10735 786 9585 12185 11064 ...
 $ WK_CODE   : Factor w/ 3159 levels "WK000300","WK000500",..: 1 1 1 1 1 1 2 2 2 2 ...
 $ GM_CODE   : Factor w/ 389 levels "GM0003","GM0005",..: 1 1 1 1 1 1 2 2 2 2 ...
 $ GM_NAAM   : Factor w/ 388 levels "'s-Gravenhage",..: 20 20 20 20 20 20 28 28 28 28 ...
 $ IND_WBI   : num  1 1 1 1 1 1 1 1 1 1 ...
 $ WATER     : Factor w/ 3 levels "B","JA","NEE": 3 3 3 3 3 3 3 3 3 3 ...
 $ POSTCODE  : Factor w/ 3907 levels "-99999999","1011",..: 3830 3832 3831 3832 3831 3830 3782 3782 3784 3784 ...
 $ DEK_PERC  : num  1 5 1 4 1 1 1 1 1 1 ...
 $ OAD       : num  1190 894 1112 351 74 ...
 $ STED      : num  3 4 3 5 5 5 4 5 5 5 ...
 $ AANT_INW  : num  2335 3080 5955 320 100 ...
 $ AANT_MAN  : num  1090 1535 2865 165 50 ...
 $ AANT_VROUW: num  1245 1545 3090 150 50 ...
 $ P_00_14_JR: num  10 17 16 21 17 24 16 21 14 17 ...
 $ P_15_24_JR: num  9 11 11 11 8 11 12 12 11 10 ...
 $ P_25_44_JR: num  21 20 22 23 14 15 21 27 17 16 ...
 $ P_45_64_JR: num  30 33 27 35 45 33 29 26 38 39 ...
 $ P_65_EO_JR: num  30 19 25 10 17 17 22 13 21 17 ...
 $ P_ONGEHUWD: num  40 43 43 50 40 46 43 48 43 41 ...
 $ P_GEHUWD  : num  36 47 41 44 55 47 45 47 45 51 ...
 $ P_GESCHEID: num  11 7 9 3 3 6 6 4 8 7 ...
 $ P_VERWEDUW: num  12 4 8 2 2 1 6 1 4 2 ...
 $ BEV_DICHTH: num  2774 1950 2094 59 18 ...
 $ AANTAL_HH : num  1310 1335 2735 115 40 ...
 $ P_EENP_HH : num  54 27 35 18 15 21 30 18 34 19 ...
 $ P_HH_Z_K  : num  28 37 31 32 48 37 34 38 37 46 ...
 $ P_HH_M_K  : num  18 36 34 50 38 42 36 45 29 35 ...
 $ GEM_HH_GR : num  1.7 2.3 2.1 2.7 2.5 2.7 2.3 2.7 2.2 2.5 ...
 $ P_WEST_AL : num  6 6 9 6 2 8 4 6 5 5 ...
 $ P_N_W_AL  : num  4 3 9 0 1 1 3 2 4 4 ...
 $ P_MAROKKO : num  0e+00 0e+00 1e+00 -1e+08 -1e+08 ...
 $ P_ANT_ARU : num  1e+00 1e+00 1e+00 -1e+08 -1e+08 ...
 $ P_SURINAM : num  0e+00 0e+00 1e+00 -1e+08 -1e+08 ...
 $ P_TURKIJE : num  1e+00 1e+00 4e+00 -1e+08 -1e+08 ...
 $ P_OVER_NW : num  2e+00 1e+00 3e+00 -1e+08 -1e+08 ...
 $ OPP_TOT   : num  90 163 295 559 582 769 313 2190 74 699 ...
 $ OPP_LAND  : num  84 158 284 540 554 ...
 $ OPP_WATER : num  5 5 11 18 28 13 5 14 3 6 ...
 $ geometry  :sfc_MULTIPOLYGON of length 13308; first list element: List of 1
  ..$ :List of 1
  .. ..$ : num [1:72, 1:2] 253642 253617 253599 253593 253602 ...
  ..- attr(*, "class")= chr  "XY" "MULTIPOLYGON" "sfg"
 - attr(*, "sf_column")= chr "geometry"
 - attr(*, "agr")= Factor w/ 3 levels "constant","aggregate",..: NA NA NA NA NA NA NA NA NA NA ...
  ..- attr(*, "names")= chr  "BU_CODE" "BU_NAAM" "WK_CODE" "GM_CODE" ...

geo-data in R : data

library(sf)
library(tidyverse)

u.buurt.sf <-
  buurt.sf %>% filter(GM_NAAM=='Utrecht') %>% select(GM_NAAM,BU_NAAM,AANT_INW)
               # filter gemeente Utrecht
               # selecteer alleen de kolommen GM_NAAM, BU_NAAM,AANT_INW

u.buurt.sf %>% head(n=3)
Simple feature collection with 3 features and 3 fields
geometry type:  MULTIPOLYGON
dimension:      XY
bbox:           xmin: 133872 ymin: 454563.4 xmax: 135198.4 ymax: 456063.6
epsg (SRID):    NA
proj4string:    +proj=sterea +lat_0=52.15616055555555 +lon_0=5.38763888888889 +k=0.9999079 +x_0=155000 +y_0=463000 +ellps=bessel +units=m +no_defs
  GM_NAAM                BU_NAAM AANT_INW                       geometry
1 Utrecht Welgelegen, Den Hommel     1395 MULTIPOLYGON (((135198.4 45...
2 Utrecht              Oog in Al     4280 MULTIPOLYGON (((134877.6 45...
3 Utrecht        Halve Maan-Zuid     1435 MULTIPOLYGON (((134161.3 45...

geo-data in R : data

library(sf)
library(tidyverse)
library(mapview)

#u.buurt.sf %>% mapview()
#u.buurt.sf %>% mapview(zcol="BU_NAAM")
u.buurt.sf %>% mapview(fill=NA)


# okay save this for later...

st_write(u.buurt.sf, "u_buurt.kml")
#st_write(u.buurt.sf, "u_buurt.gml")
#st_write(u.buurt.sf, "u_buurt.shp")
#st_write(u.buurt.sf, "u.buurt.GeoJSON")

# st_drivers() for possible formats

# write/read straight in postgres db!

# library(RpostgreSQL)
# conn <- dbCOnnect(PostgreSQL(),dbname='your_db_name', user='your_user_name')
# st_write_db(conn, u.buurt.sf, 'your_table_name')

geo-data in R : explore bomen data

library(sf)
library(tidyverse)
bomen.sf <- st_read("../dataUtrecht/bomenkaart/Bomen_GISIB_ArcGISonline.shp")
Reading layer `Bomen_GISIB_ArcGISonline' from data source `L:\GreenStat\projecten\2017-X03 maptime 030 R GIS\dataUtrecht\bomenkaart\Bomen_GISIB_ArcGISonline.shp' using driver `ESRI Shapefile'
Simple feature collection with 168736 features and 10 fields
geometry type:  POINT
dimension:      XY
bbox:           xmin: 126735.1 ymin: 448930 xmax: 141827.3 ymax: 461162.1
epsg (SRID):    NA
proj4string:    +proj=sterea +lat_0=52.15616055555555 +lon_0=5.38763888888889 +k=0.9999079 +x_0=155000 +y_0=463000 +ellps=bessel +units=m +no_defs
#bomen.sf %>% head(n=3)

geo-data in R : explore bomen data

library(sf)
library(tidyverse)

bomen.sf %>% str()
Classes 'sf' and 'data.frame':	168736 obs. of  11 variables:
 $ Naam_NL   : Factor w/ 368 levels "acacia","Acacia",..: 179 162 266 162 163 165 165 341 179 6 ...
 $ Naam_Wet  : Factor w/ 558 levels "Abies concolor",..: 345 379 449 384 382 557 557 517 366 236 ...
 $ Plantjaar : num  2017 2017 NA 2012 1995 ...
 $ Eigenaar  : Factor w/ 2 levels "Gemeentelijk",..: 1 1 2 1 1 1 1 1 1 1 ...
 $ Buurt     : Factor w/ 194 levels "'t Weer","1e Daalsebuurt",..: 49 47 151 166 166 55 55 55 55 55 ...
 $ Wijk      : Factor w/ 10 levels "Binnenstad","Leidsche Rijn",..: 4 4 4 3 3 4 4 4 4 4 ...
 $ Boomnr    : num  2938159 2938160 2938161 2930732 2930733 ...
 $ Boomnr_Oud: Factor w/ 168154 levels "1000","10002",..: NA NA NA NA NA NA NA NA NA NA ...
 $ X_coordina: num  134185 134292 134346 136882 137486 ...
 $ Y_coordina: num  457957 458042 457536 457854 458126 ...
 $ geometry  :sfc_POINT of length 168736; first list element: Classes 'XY', 'POINT', 'sfg'  num [1:2] 134185 457957
 - attr(*, "sf_column")= chr "geometry"
 - attr(*, "agr")= Factor w/ 3 levels "constant","aggregate",..: NA NA NA NA NA NA NA NA NA NA
  ..- attr(*, "names")= chr  "Naam_NL" "Naam_Wet" "Plantjaar" "Eigenaar" ...

nice, bomen data also has 'Wijk' en 'Buurt' ...

geo-data in R : explore bomen data

library(sf)
library(tidyverse)

bomen.sf %>%
  ggplot(aes(Plantjaar)) +
  geom_histogram(binwidth=10) + 
  theme(text = element_text(size = 25))

plot of chunk unnamed-chunk-22


library(sf)
library(tidyverse)

bomen.sf %>%
  ggplot(aes(2018-Plantjaar)) +
  geom_histogram(binwidth=10) +
  theme(text = element_text(size = 25))

plot of chunk unnamed-chunk-23

geo-data in R : explore bomen data

library(sf)
library(tidyverse)

bomen.sf %>% 
  ggplot(aes(2018-Plantjaar, fill=Eigenaar)) + 
  geom_histogram(binwidth=25) + 
  theme(text = element_text(size = 25))

plot of chunk unnamed-chunk-24


geo-data in R : analysis

select trees > 100 yr

library(sf)
library(tidyverse)
library(mapview)

bomen100.sf <- bomen.sf %>% 
      mutate (leeftijd = 2018 - Plantjaar) %>% 
      filter(leeftijd>100) %>% 
      select(Naam_NL,Eigenaar,leeftijd)

bomen100.sf  %>% head()
Simple feature collection with 6 features and 3 fields
geometry type:  POINT
dimension:      XY
bbox:           xmin: 134643 ymin: 453446.5 xmax: 139270.3 ymax: 456316.7
epsg (SRID):    NA
proj4string:    +proj=sterea +lat_0=52.15616055555555 +lon_0=5.38763888888889 +k=0.9999079 +x_0=155000 +y_0=463000 +ellps=bessel +units=m +no_defs
          Naam_NL     Eigenaar leeftijd                  geometry
1     Gewone beuk Gemeentelijk      143   POINT (139099 453446.5)
2       Krimlinde Gemeentelijk      103 POINT (138084.9 455459.2)
3        Zomereik Gemeentelijk      144 POINT (139270.3 453553.1)
4        Zomereik Gemeentelijk      128   POINT (134643 454852.9)
5       Rode beuk Gemeentelijk      118 POINT (138136.4 456316.7)
6 Hollandse linde Gemeentelijk      108     POINT (137845 454053)
#bomen100.sf %>% mapview(cex="leeftijd") +mapview(u.buurt.sf, fill=NA)
#
# 'cex' controles size of dots, bigger dots for older trees
#

geo-data in R : spatial join

spatial join with st_join

library(sf)
library(tidyverse)
library(mapview)


bomen100_inw_ubuurt.sf <-
bomen100.sf %>%
  st_join(u.buurt.sf) 

bomen100_inw_ubuurt.sf %>% head(n=2)
Simple feature collection with 2 features and 6 fields
geometry type:  POINT
dimension:      XY
bbox:           xmin: 138084.9 ymin: 453446.5 xmax: 139099 ymax: 455459.2
epsg (SRID):    NA
proj4string:    +proj=sterea +lat_0=52.15616055555555 +lon_0=5.38763888888889 +k=0.9999079 +x_0=155000 +y_0=463000 +ellps=bessel +units=m +no_defs
      Naam_NL     Eigenaar leeftijd GM_NAAM                       BU_NAAM
1 Gewone beuk Gemeentelijk      143 Utrecht Maarschalkerweerd en Mereveld
2   Krimlinde Gemeentelijk      103 Utrecht    Wilhelminapark en omgeving
  AANT_INW                  geometry
1      175   POINT (139099 453446.5)
2     2620 POINT (138084.9 455459.2)

geo-data in R : db join

database join with left_join

library(sf)
library(tidyverse)
library(mapview)

# left_join is for 'sp' join 'df' only, 
#'sp' left_join 'sp' gives err

bomen_per_buurt.df <-   
bomen100_inw_ubuurt.sf %>%
  st_set_geometry(NULL) %>%   
    # drop the geometry column
  group_by(BU_NAAM) %>%      
    # group by 'BU_NAAM
  summarize(n=n())          
    # summarize with function

    # n = number of cases
    # sum, mean, min, max, median,
    # first, last ...

u.buurt.sf %>%
  left_join(bomen_per_buurt.df, by=c('BU_NAAM'='BU_NAAM')) %>%
  mapview(zcol="n", at=c(1,10,100,250,500), legend=TRUE)
 # head()

geo-data in R : db join

join table to spatial object

library(sf)
library(tidyverse)
library(mapview)

u.buurt.sf %>%
  left_join(bomen_per_buurt.df) %>%
  mutate(boom_per_100 = n/(AANT_INW/100)) %>%
           # aantal oude bomen per 100 inwoners 
  mapview(zcol="boom_per_100",
          at=c(0,1,10,100,250),
          legend=TRUE) + 
  mapview(bomen100.sf, cex="leeftijd")
  #head()  

spatial analysis

do stuff yourself

===================================================

==================================================

Extra examples : Non spatial > data exploration tidy-style

summarize and ...

# summarize
df %>% 
  group_by(maand,var1) %>%
  summarize(median_var2=median(var2))
# A tibble: 48 x 3
# Groups:   maand [?]
   maand var1  median_var2
   <chr> <fct>       <dbl>
 1 01    A           0.515
 2 01    B           0.575
 3 01    C           0.422
 4 01    D           0.502
 5 02    A           0.479
 6 02    B           0.660
 7 02    C           0.493
 8 02    D           0.460
 9 03    A           0.462
10 03    B           0.483
# ... with 38 more rows

.. plot in one go

# conditional plot
df %>% 
  group_by(maand,var1) %>%
  summarize(median_var2=median(var2)) %>%
  ggplot() +
    geom_point(aes(var1,median_var2),size=2) +
    facet_wrap(~maand) +  
    theme(text = element_text(size = 25))

plot of chunk unnamed-chunk-30

Extra examples : Non spatial > data exploration tidy-style

use 2 geom's in one graph

df %>% 
  group_by(maand) %>% 
  mutate(mean_var2=mean(var2)) %>%
  ggplot() +
    geom_boxplot(aes(var1,var2)) +
    geom_hline(aes(yintercept=mean_var2), col='red') +
    facet_wrap(~maand) +  
    theme(text = element_text(size = 25))

plot of chunk unnamed-chunk-31

Extra examples : spatial > data exploration tidy-style

calculate area's

library(sf)
library(tidyverse)

u.buurt.sf %>% mutate(area = st_area(geometry)) %>% head(n=3)
Simple feature collection with 3 features and 4 fields
geometry type:  MULTIPOLYGON
dimension:      XY
bbox:           xmin: 133872 ymin: 454563.4 xmax: 135198.4 ymax: 456063.6
epsg (SRID):    NA
proj4string:    +proj=sterea +lat_0=52.15616055555555 +lon_0=5.38763888888889 +k=0.9999079 +x_0=155000 +y_0=463000 +ellps=bessel +units=m +no_defs
  GM_NAAM                BU_NAAM AANT_INW         area
1 Utrecht Welgelegen, Den Hommel     1395 394091.1 m^2
2 Utrecht              Oog in Al     4280 471201.6 m^2
3 Utrecht        Halve Maan-Zuid     1435 232087.7 m^2
                        geometry
1 MULTIPOLYGON (((135198.4 45...
2 MULTIPOLYGON (((134877.6 45...
3 MULTIPOLYGON (((134161.3 45...
## note the geometry field

Extra examples : spatial > data exploration tidy-style

select one polygon calculate area alter geometry from polygon to line calculate length (= perimeter)

library(sf)
library(tidyverse)

u.buurt.sf %>%
  filter (BU_NAAM=='Oog in Al') %>% st_area()
471201.6 m^2
# go from  multipolygon to polygon to line ....
u.buurt.sf %>%
  filter (BU_NAAM=='Oog in Al') %>%
  st_cast('POLYGON') %>% # st_area()
  st_cast('LINESTRING') %>% st_length()
2854.89 m
# note the warnings ...

Extra examples : spatial > data exploration tidy-style

buffer ...

#u.buurt.sf %>%
#  filter (BU_NAAM=='Oog in Al') %>%
#  st_buffer(100) %>% mapview(fill=NA)  + mapview(u.buurt.sf %>% filter (BU_NAAM=='Oog in Al'))

#  st_buffer value can also be negative ...

Extra examples : spatial > data exploration tidy-style

filter rows in a spatial object

library(tidyverse)
library(sf)

#bomen100.sf[1:10,]
bomen100.sf %>% filter(leeftijd==101)
Simple feature collection with 63 features and 3 fields
geometry type:  POINT
dimension:      XY
bbox:           xmin: 126762.4 ymin: 450519.3 xmax: 140240.7 ymax: 458069.7
epsg (SRID):    NA
proj4string:    +proj=sterea +lat_0=52.15616055555555 +lon_0=5.38763888888889 +k=0.9999079 +x_0=155000 +y_0=463000 +ellps=bessel +units=m +no_defs
First 10 features:
           Naam_NL          Eigenaar leeftijd                  geometry
1         Zomereik      Gemeentelijk      101 POINT (139511.3 453349.8)
2         Zomereik      Gemeentelijk      101 POINT (139354.3 453603.7)
3      Gewone beuk      Gemeentelijk      101 POINT (139819.7 453394.8)
4      Gewone beuk      Gemeentelijk      101 POINT (138966.1 453562.4)
5  Hollandse linde Niet gemeentelijk      101 POINT (132462.1 450519.3)
6    Gewone acacia      Gemeentelijk      101 POINT (139263.6 453738.8)
7      Gewone beuk      Gemeentelijk      101 POINT (138858.1 453538.3)
8         Zomereik      Gemeentelijk      101 POINT (140236.8 453517.1)
9         Zomereik      Gemeentelijk      101 POINT (139739.5 453982.4)
10     Gewone beuk      Gemeentelijk      101 POINT (139950.4 453383.6)

Extra examples : spatial > data exploration tidy-style

filter rows in a spatial object with another spatial object

library(tidyverse)
library(sf)
library(mapview)

#bomen100.sf[1:10,]
#bomen100.sf %>% filter(leeftijd==101)

een_wijk.sf <-u.buurt.sf %>%  filter (BU_NAAM=='Oog in Al')

bomen100.sf[een_wijk.sf,]
Simple feature collection with 51 features and 3 fields
geometry type:  POINT
dimension:      XY
bbox:           xmin: 134419.3 ymin: 455017.3 xmax: 134847.7 ymax: 455595.9
epsg (SRID):    NA
proj4string:    +proj=sterea +lat_0=52.15616055555555 +lon_0=5.38763888888889 +k=0.9999079 +x_0=155000 +y_0=463000 +ellps=bessel +units=m +no_defs
First 10 features:
                           Naam_NL     Eigenaar leeftijd
17                      Venijnboom Gemeentelijk      153
48                Japanse noteboom Gemeentelijk      138
82                      Venijnboom Gemeentelijk      128
208                    Watercipres Gemeentelijk      108
242                  Gewone acacia Gemeentelijk      128
314                  Scherpe hulst Gemeentelijk      118
320 Dubbelbloemige paardenkastanje Gemeentelijk      118
342                      Gewone es Gemeentelijk      108
430                     Zwarte den Gemeentelijk      138
582                      Rode beuk Gemeentelijk      128
                     geometry
17  POINT (134441.8 455039.1)
48  POINT (134668.9 455561.2)
82  POINT (134841.2 455474.4)
208   POINT (134724 455394.6)
242   POINT (134846 455457.8)
314   POINT (134752.4 455409)
320 POINT (134756.5 455417.7)
342 POINT (134746.2 455517.2)
430   POINT (134715.3 455584)
582 POINT (134794.3 455450.6)
# mapview(een_wijk.sf , fill=NA) + mapview(bomen100.sf[een_wijk.sf,], zcol="Naam_NL", legend=TRUE)

Extra examples : spatial > data exploration tidy-style

# mapview(een_wijk.sf , fill=NA) + 
#  mapview(bomen100.sf[een_wijk.sf,], zcol="Naam_NL", legend=TRUE)